Determination of the initial direction of cracks growth at the moment of movement
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 40-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technique for determining the initial direction of the growth of a straight crack in a plate of elastic material with a load, applied at the boundaries of the plate in the plane strain conditions, is considered. In the paper analytical representations for the stress tensor components are given. The formulation of the problem and the sequence of steps for finding the value of the angle, at which subcritical crack growth begins, are described. The obtained theoretical dependences by definition of the characteristics of the limiting state of the construction allow making a motivated choice of geometric parameters with the strength properties of the material.
Keywords: crack, initial direction of crack growth, stress intensity, material strength.
@article{PFMT_2019_1_a6,
     author = {M. A. Hundzina},
     title = {Determination of the initial direction of cracks growth at the moment of movement},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--44},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a6/}
}
TY  - JOUR
AU  - M. A. Hundzina
TI  - Determination of the initial direction of cracks growth at the moment of movement
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 40
EP  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a6/
LA  - ru
ID  - PFMT_2019_1_a6
ER  - 
%0 Journal Article
%A M. A. Hundzina
%T Determination of the initial direction of cracks growth at the moment of movement
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 40-44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a6/
%G ru
%F PFMT_2019_1_a6
M. A. Hundzina. Determination of the initial direction of cracks growth at the moment of movement. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 40-44. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a6/

[1] V.V. Novozhilov, “K osnovam teorii ravnovesnykh treschin v khrupkikh telakh”, PMM, 33:5 (1969), 797–812 | Zbl

[2] V.A. Levin, E.M. Morozov, Yu.G. Matvienko, Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004, 408 pp.

[3] V.Z. Parton, E.M. Morozov, Uprugoplasticheskaya mekhanika razrusheniya, Nauka, M., 1985, 503 pp.

[4] L.V. Stepanova, S.A. Bronnikov, O.N. Belova, “Otsenka napravleniya rosta treschiny v usloviyakh smeshannogo nagruzheniya (normalnyi otryv i poperechnyi sdvig)”, Vestnik PNIPU, 2017, no. 4, 189–213

[5] Yu.G. Matvienko, “Modelirovanie kinetiki razvitiya treschin v poverkhnostnykh sloyakh materiala”, Zavodskaya laboratoriya, 83:1 (2017), 65–71 | Zbl

[6] F. Berto, M.R. Ayatollahi, “A rewiew of the local strain energy density approach to V-nothces”, Physical mesomechanics, 20:2 (2017), 14–27

[7] Y.G. Matvienko, E.M. Morozov, “Two basic approaches in a search of the crack propagation angle”, Fatique Fracture of Engineering Materials Structures, 40:8 (2017), 1191–1200 | DOI

[8] M.R. Ayatollahi, M.R.M. Aliha, “On the Use of Brazilian Disc Specimen for calculating Mixed Mode I-II Fracture Toughness of Rock Materials”, Engineering Fracture Mechanics, 75:16 (2008), 4631–4641 | DOI

[9] M.A. Gundina, “Lokalnyi kriterii nachalnogo napravleniya rosta treschiny”, VI Masherovskie chteniya, Materialy MNPK (27–28 sentyabrya 2012 g., Vitebsk), 2012, 58–59

[10] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, NY, 1970, 100–209 | MR

[11] V.I. Astafev, Yu.N. Radaev, L.V. Stepanova, Nelineinaya mekhanika razrusheniya, Samarskii universitet, Samara, 2001, 562 pp.

[12] C.T. Sun, J.F. Doyle, S. Rizzi, Fatigue crack growth and retardation due to overloads in metal-matrix composites, v. I, Fatigue Crack Growth in Boron-Aluminum Metal-Matrix Composites, 1986, 122 pp.