Speenless particle motion equations in the electromagnetic field considering dipole polarizability
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 13-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the relativistic Lagrange–Euler equations, the equations of motion for a charged structural particle of a spin 0 in the electromagnetic field are obtained. The Lagrangian of the electromagnetic field interaction with a structural spinless particle contains dipole polarizabilities that are consistent with polarizabilities which are included in the amplitude of Compton scattering on a spinless particle. This Lagrangian and the amplitude are obtained based on the gauge-invariant approach and on the solution of electrodynamic equations using the Green function method.
Keywords: charged structural spinless particle, dipole polarizabilities, Lagrangian, amplitude of Compton scattering.
@article{PFMT_2019_1_a1,
     author = {V. V. Andreev and N. V. Maksimenko and O. M. Deryuzhkova},
     title = {Speenless particle motion equations in the electromagnetic field considering dipole polarizability},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--15},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a1/}
}
TY  - JOUR
AU  - V. V. Andreev
AU  - N. V. Maksimenko
AU  - O. M. Deryuzhkova
TI  - Speenless particle motion equations in the electromagnetic field considering dipole polarizability
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 13
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a1/
LA  - ru
ID  - PFMT_2019_1_a1
ER  - 
%0 Journal Article
%A V. V. Andreev
%A N. V. Maksimenko
%A O. M. Deryuzhkova
%T Speenless particle motion equations in the electromagnetic field considering dipole polarizability
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 13-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a1/
%G ru
%F PFMT_2019_1_a1
V. V. Andreev; N. V. Maksimenko; O. M. Deryuzhkova. Speenless particle motion equations in the electromagnetic field considering dipole polarizability. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 13-15. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a1/

[1] G. Paz, An introduction to NRQED, arXiv: (Date of access: 24.03.2015) 1503.07216 [hep-ph]

[2] R.J. Hill, G. Lee, G. Paz, M.P. Solon, “The NRQED lagrangian at order $1/M^4$”, Phys. Rev. D, 87:5 (2013), 053017, 13 pp. | DOI

[3] J.S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI

[4] N.V. Maksimenko, O.M. Deryuzhkova, “Kovariantnyi kalibrovochno-invariantnyi formalizm Lagranzha s uchetom polyarizuemostei chastits”, Vestsi NAN Belarusi, Ceryya fiz.-mat. navuk, 2011, no. 2, 27–30

[5] A.A. Bogush, L.G. Moroz, Vvedenie v teoriyu klassicheskikh polei, Nauka i tekhnika, Minsk, 1968, 387 pp.

[6] A.A. Bogush, Vvedenie v kalibrovochnuyu polevuyu teoriyu elektroslabykh vzaimodeistvii, Nauka i tekhnika, Minsk, 1987, 359 pp.

[7] V.A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12 (1981), 692–753

[8] N.V. Maksimenko, S.G. Shulga, “Nizkoenergeticheskoe razlozhenie amplitudy komptonovskogo rasseyaniya na adrone i odnovremennye kommutatory tokov”, Yadernaya fizika, 52:2 (8) (1990), 524–534

[9] G. Feinberg, J. Sucher, “General Theory of the van der Waals interaction: a model-independent approach”, Phys. Rev. A, 2 (1970), 2395–2415 | DOI