Effect of spatial orientation and thickness of Bi$_{12}$GeO$_{20}$ crystal on the gain of the subject light wave: theory and experiment
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dependence of the gain of an object light wave in two-wave interaction on the orientation angle and the thickness of the photorefractive $(\overline{1}\,\overline{1}\,0)$-cut Bi$_{12}$GeO$_{20}$ crystal using only a single crystal sample with a thickness of $16$ mm has been experimentally investigated. The technique of carrying out the experiment and processing the results is described. The decisive role of the inverse piezoelectric and photoelastic effects in the theoretical interpretation of the experimental data is shown. Theoretical optimization of the gain of the object light wave in this crystal is performed.
Keywords: photorefractive crystal, BGO crystal, gain of the object light wave, electro-optical effect, inverse piezoelectric effect, photoelastic effect, optical activity.
@article{PFMT_2018_4_a6,
     author = {A. V. Makarevich and V. V. Shepelevich and S. M. Shandarov},
     title = {Effect of spatial orientation and thickness of {Bi}$_{12}${GeO}$_{20}$ crystal on the gain of the subject light wave: theory and experiment},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {35--43},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a6/}
}
TY  - JOUR
AU  - A. V. Makarevich
AU  - V. V. Shepelevich
AU  - S. M. Shandarov
TI  - Effect of spatial orientation and thickness of Bi$_{12}$GeO$_{20}$ crystal on the gain of the subject light wave: theory and experiment
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 35
EP  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a6/
LA  - ru
ID  - PFMT_2018_4_a6
ER  - 
%0 Journal Article
%A A. V. Makarevich
%A V. V. Shepelevich
%A S. M. Shandarov
%T Effect of spatial orientation and thickness of Bi$_{12}$GeO$_{20}$ crystal on the gain of the subject light wave: theory and experiment
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 35-43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a6/
%G ru
%F PFMT_2018_4_a6
A. V. Makarevich; V. V. Shepelevich; S. M. Shandarov. Effect of spatial orientation and thickness of Bi$_{12}$GeO$_{20}$ crystal on the gain of the subject light wave: theory and experiment. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 35-43. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a6/

[1] M.P. Petrov, S.I. Stepanov, A.V. Khomenko, Fotorefraktivnye kristally v kogerentnoi optike, Nauka. S.-Peterburgskoe otd-nie, SPb., 1992, 320 pp.

[2] L. Solymar, D.J. Webb, A. Grunnet-Jepsen, The physics and applications of photorefractive materials, Clarendon Press, Oxford, 1996, 494 pp.

[3] U. Bortolozzo et al., “Picometer detection by adaptive holographic interferometry”, Fundamentals of Picoscience, ed. K.D. Sattler, New York, 2014, 3–26

[4] M.E. Oliveira et al., “Photorefractive moire-like patterns for the multifringe projection method in Fourier transform profilometry”, Appl. Opt., 55:5 (2016), 1048–1053 | DOI

[5] M.P. Petrov, T.G. Pencheva, S.I. Stepanov, “Light diffraction from volume phase holograms in electrooptic photorefractive crystals”, Journal of Optics, 12:5 (1981), 287–292 | DOI

[6] S. Mallik, D. Rouede, A.G. Apostolidis, “Efficiency and polarization characteristics of photorefractive diffraction in a Bi$_{12}$SiO$_{20}$ crystal”, JOSA B, 4:8 (1987), 1247–1259 | DOI

[7] S. Mallik, D. Rouede, “Influence of the polarization direction on two-beam coupling in photorefractive Bi$_{12}$SiO$_{20}$: Diffusion regime”, Appl. Phys. B, 43:4 (1987), 239–245 | DOI

[8] S.M. Shandarov i dr., Fotorefraktivnye effekty v elektroopticheskikh kristallakh, Tomsk. gos. un-t sistem upr. i radioelektroniki, Tomsk, 2007, 242 pp.

[9] V.V. Shepelevich, Golografiya v fotorefraktivnykh opticheski aktivnykh kristallakh, Izd. tsentr BGU, Minsk, 2012, 254 pp.

[10] S.I. Stepanov, S.M. Shandarov, N.D. Khatkov, “Fotouprugii vklad v fotorefraktivnyi effekt v kubicheskikh kristallakh”, FTT, 24:10 (1987), 3054–3058

[11] V.V. Shepelevich, S.M. Shandarov, A.E. Mandel, “Light diffraction by holographic gratings in optically active photorefractive piezocrystals”, Ferroelectrics, 110 (1990), 235–249 | DOI

[12] G. Cedilnik et al., “Real-time holographic interferometry with double two-wave mixing in photorefractive crystals”, Appl. Opt., 39:13 (2000), 2091–2100 | DOI

[13] M.R.R. Gesualdi, M. Muramatsu, E.A. Barbosa, “Light-induced lens analysis in photorefractive crystals employing phaseshifting real-time holographic interferometry”, Opt. comm., 281:23 (2008), 5739–5744 | DOI

[14] G.N. de Oliveira, M.E. Oliveira, P.A.M. dos Santos, “Photorefractive holographic moire-like patterns for secure numerical code generation”, Opt. Lett., 38:6 (2013), 1004–1006 | DOI | MR

[15] J. Ricardo et al., “Digital holographic microscopy with photorefractive sillenite Bi$_{12}$SiO$_{20}$ crystals”, Opt. Lasers Eng., 51:8 (2013), 949–952 | DOI | MR

[16] E. Shamonina et al., “Dynamic holography with none plane waves in sillenites”, Opt. Quant. Electron., 28:1 (1996), 25–42 | DOI

[17] E. Shamonina et al., “Investigation of two-wave mixing in arbitrary oriented sillenite crystals”, Appl. Phys. B, 64:1 (1997), 49–56 | DOI

[18] E. Shamonina et al., “Optical activity in photorefractive Bi$_{12}$TiO$_{20}$”, Opt. Comm., 146:1–6 (1998), 62–68 | DOI

[19] A.V. Makarevich i dr., “Eksperimentalnoe issledovanie orientatsionnoi zavisimosti difraktsionnoi effektivnosti propuskayuschikh gologramm ot tolschiny kristalla Bi$_{12}$SiO$_{20}$”, Pisma v ZhTF, 41:19 (2015), 46–54

[20] V.V. Shepelevich i dr., “Eksperimentalnoe issledovanie zavisimosti difraktsionnoi effektivnosti fotorefraktivnykh gologramm ot tolschiny obraztsa i orientatsionnogo ugla v kristalle Bi$_{12}$SiO$_{20}$ sreza (110)”, Izvestiya vuzov. Fizika, 28:10 (2015), 74–79

[21] A.A. Blistalov i dr., Akusticheskie kristally, ed. M.P. Shaskolskaya, Nauka, M., 1982, 632 pp.

[22] V.M. Skorikov et al., “Growth of sillenite-structure single crystals”, Inorg. Mater., 41, Suppl. 1 (2005), S24–S25 | DOI

[23] M. Cronin-Golomb, M. Klein, “Photorefractive Materials and Devices”, Handbook of Optics, ed. M. Bass, New York, 1995, 39.1–39.42

[24] H. Vogt et al., “Growth and holographic characterization of nonstoichiometric sillenite-type crystals”, J. Appl. Phys., 90:7 (2001), 3167–3173 | DOI

[25] N.C. Deliolanis et al., “Photorefractive properties of (110) and (111)-cut sillenite crystals when external electric field is applied along the direction of the optimum diffraction efficiency”, Appl. Phys. B, 75:1 (2002), 67–73 | DOI

[26] N.C. Deliolanis et al., “Diffractive properties of volume phase gratings in photorefractive sillenite crystals of arbitrary cut under the influence of an external electric field”, Phys. Rev. E, 68:5 (2003), 056602, 17 pp. | DOI

[27] A.J. Slobodnik, J.C. Sethares, “Elastic, piezoelectric, and dielectric constants of Bi$_{12}$GeO$_{20}$”, J. Appl. Phys., 43:1 (1972), 247–248 | DOI

[28] P.I. Ropot, “Opredelenie fotouprugikh postoyannykh opticheski aktivnykh kubicheskikh kristallov polyarizatsionnym metodom”, Opt. i spektr., 70:2 (1991), 371–375

[29] V.V. Shepelevich, “K protsessu formirovaniya golograficheskikh reshetok v ploskoparallelnom girotropnom sloe”, Opt. i spektr., 54:5 (1983), 1064–1071