On the generalized norm of a finite group
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 103-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\pi=\{p_1,\dots,p_n\}\subseteq\mathbb{P}$. Then $G$ is called $\pi$-special if $G=O_{p_1}(G)\times\dots\times O_{p_n}(G)\times O_{\pi'}(G)$. We use $\mathfrak{N}_{\pi sp}$ to denote the class of all finite $\pi$-special groups. Let $\mathrm{N}_{\pi sp}$ be the intersection of the normalizers of the $\pi$-special residuals of all subgroups of $G$, that is, $\mathrm{N}_{\pi sp}(G)=\bigcap\limits_{H\leqslant G}N_G(H^{\mathfrak{N}_{\pi sp}})$. We say that $\mathrm{N}_{\pi sp}$ is the $\pi$-special norm of $G$. We study the basic properties of the $\pi$-special norm of $G$. In particular, we prove that $\mathrm{N}_{\pi sp}$ is $\pi$-soluble.
Keywords: finite group, $\pi$-special group, $\pi$-special residual of a group, $\pi$-special norm of a group.
Mots-clés : $\pi$-soluble group
@article{PFMT_2018_4_a17,
     author = {V. M. Selkin and N. S. Kosenok},
     title = {On the generalized norm of a finite group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {103--105},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/}
}
TY  - JOUR
AU  - V. M. Selkin
AU  - N. S. Kosenok
TI  - On the generalized norm of a finite group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 103
EP  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/
LA  - en
ID  - PFMT_2018_4_a17
ER  - 
%0 Journal Article
%A V. M. Selkin
%A N. S. Kosenok
%T On the generalized norm of a finite group
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 103-105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/
%G en
%F PFMT_2018_4_a17
V. M. Selkin; N. S. Kosenok. On the generalized norm of a finite group. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 103-105. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/

[1] S.A. Chunikhin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964 | MR

[2] W. Guo, A.N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl

[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[5] Z. Chi, A.N. Skiba, “On $\Sigma_t^\sigma$-closed classes of finite groups”, Ukrainian Math. J., 2018 (to appear)

[6] Z. Chi, V.G. Safonov, A.N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Commun. Algebra (to appear)

[7] Z. Chi, A.N. Skiba, “A generalization of the Kramer's theory”, Acta Math. Hungarica (to appear)

[8] R. Baer, “Der Kern, eine charkteristishe Untergruppe”, Compos. Math., 1 (1935), 254–283 | MR

[9] R. Baer, “Norm and hypernorm”, Publ. Math. Debrecen, 4 (1956), 347–350 | MR | Zbl

[10] Z. Shen, W. Shi, G. Qian, “On the norm of the nilpotent residuals of all subgroups of a finite group”, J. Algebra, 352 (2012), 290–298 | DOI | MR | Zbl