Mots-clés : $\pi$-soluble group
@article{PFMT_2018_4_a17,
author = {V. M. Selkin and N. S. Kosenok},
title = {On the generalized norm of a finite group},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {103--105},
year = {2018},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/}
}
V. M. Selkin; N. S. Kosenok. On the generalized norm of a finite group. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 103-105. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/
[1] S.A. Chunikhin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964 | MR
[2] W. Guo, A.N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl
[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[5] Z. Chi, A.N. Skiba, “On $\Sigma_t^\sigma$-closed classes of finite groups”, Ukrainian Math. J., 2018 (to appear)
[6] Z. Chi, V.G. Safonov, A.N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Commun. Algebra (to appear)
[7] Z. Chi, A.N. Skiba, “A generalization of the Kramer's theory”, Acta Math. Hungarica (to appear)
[8] R. Baer, “Der Kern, eine charkteristishe Untergruppe”, Compos. Math., 1 (1935), 254–283 | MR
[9] R. Baer, “Norm and hypernorm”, Publ. Math. Debrecen, 4 (1956), 347–350 | MR | Zbl
[10] Z. Shen, W. Shi, G. Qian, “On the norm of the nilpotent residuals of all subgroups of a finite group”, J. Algebra, 352 (2012), 290–298 | DOI | MR | Zbl