Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_4_a17, author = {V. M. Selkin and N. S. Kosenok}, title = {On the generalized norm of a finite group}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {103--105}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/} }
V. M. Selkin; N. S. Kosenok. On the generalized norm of a finite group. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 103-105. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a17/
[1] S.A. Chunikhin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964 | MR
[2] W. Guo, A.N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl
[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl
[5] Z. Chi, A.N. Skiba, “On $\Sigma_t^\sigma$-closed classes of finite groups”, Ukrainian Math. J., 2018 (to appear)
[6] Z. Chi, V.G. Safonov, A.N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Commun. Algebra (to appear)
[7] Z. Chi, A.N. Skiba, “A generalization of the Kramer's theory”, Acta Math. Hungarica (to appear)
[8] R. Baer, “Der Kern, eine charkteristishe Untergruppe”, Compos. Math., 1 (1935), 254–283 | MR
[9] R. Baer, “Norm and hypernorm”, Publ. Math. Debrecen, 4 (1956), 347–350 | MR | Zbl
[10] Z. Shen, W. Shi, G. Qian, “On the norm of the nilpotent residuals of all subgroups of a finite group”, J. Algebra, 352 (2012), 290–298 | DOI | MR | Zbl