Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_4_a14, author = {D. Y. Kopats and M. A. Matalytski}, title = {Investigation in non-stationary mode of $G$-network with signal and group removal customers by successive approximation method}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {85--89}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a14/} }
TY - JOUR AU - D. Y. Kopats AU - M. A. Matalytski TI - Investigation in non-stationary mode of $G$-network with signal and group removal customers by successive approximation method JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 85 EP - 89 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a14/ LA - ru ID - PFMT_2018_4_a14 ER -
%0 Journal Article %A D. Y. Kopats %A M. A. Matalytski %T Investigation in non-stationary mode of $G$-network with signal and group removal customers by successive approximation method %J Problemy fiziki, matematiki i tehniki %D 2018 %P 85-89 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a14/ %G ru %F PFMT_2018_4_a14
D. Y. Kopats; M. A. Matalytski. Investigation in non-stationary mode of $G$-network with signal and group removal customers by successive approximation method. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 85-89. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a14/
[1] E. Gelenbe, “Product form queueing networks with negative and positive customers”, Journal of Applied Probability, 28 (1991), 656–663 | DOI | MR | Zbl
[2] E. Gelenbe, “G-networks with triggered customer movement”, Journal of Applied Probability, 30 (1993), 742–748 | DOI | MR | Zbl
[3] E. Gelenbe, “G-networks with signals and batch removal”, Probability in the Engineering and Informational Sciences, 7 (1993), 335–342 | DOI
[4] M.A. Matalytskii, V.V. Naumenko, Stokhasticheskie seti s nestandartnymi peremescheniyami zayavok, GrGU, Grodno, 2016, 348 pp.
[5] M. Matalytski, V. Naumenko, “Investigation of G-network with signals at transient behavior”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 75–86 | DOI | MR
[6] D.Ya. Kopat, M.A. Matalytskii, “Analiz seti s polozhitelnymi i otritsatelnymi zayavkami razlichnykh tipov v perekhodnom rezhime”, Vestnik GrGU. Seriya 2, 2017, no. 3, 150–162
[7] L.D. Kudryavtsev, Kurs matematicheskogo analiza, v 3 t., v. 2, Vysshaya shkola, M., 2006, 720 pp.