Alloyed zinc oxide thin films for the conversion of the silicon solar cells spectrum
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Optical and photoelectrical properties of ZnO:Me:RE$^{3+}$ thin films on glass and silicon substrates, formed by means of the solgel technique by the spin-coating method are presented. It is shown, that the Al/ZnO:Me:RE$^{3+}$/Si structures obtain photosensitivity in visible and IR spectral ranges. Characteristics obtained for the system “Solar Cell / ZnO:Me:RE$^{3+}$/ glass” have presented a possibility of the use of the studied system as the down-converter of the entering irradiation, as it gives a contribution to the performance factor of the individual solar cell as compared to the “Solar Element/ZnO:Al/glass” system.
Keywords: zinc oxide, rare-earth ions, silicon solar cells, photosensitivity, spectrum conversion.
Mots-clés : transmission
@article{PFMT_2018_3_a4,
     author = {V. V. Malyutina-Bronskaya and V. B. Zalesskii and A. V. Semchenko and V. V. Sydsky},
     title = {Alloyed zinc oxide thin films for the conversion of the silicon solar cells spectrum},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {32--38},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a4/}
}
TY  - JOUR
AU  - V. V. Malyutina-Bronskaya
AU  - V. B. Zalesskii
AU  - A. V. Semchenko
AU  - V. V. Sydsky
TI  - Alloyed zinc oxide thin films for the conversion of the silicon solar cells spectrum
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 32
EP  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a4/
LA  - ru
ID  - PFMT_2018_3_a4
ER  - 
%0 Journal Article
%A V. V. Malyutina-Bronskaya
%A V. B. Zalesskii
%A A. V. Semchenko
%A V. V. Sydsky
%T Alloyed zinc oxide thin films for the conversion of the silicon solar cells spectrum
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 32-38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a4/
%G ru
%F PFMT_2018_3_a4
V. V. Malyutina-Bronskaya; V. B. Zalesskii; A. V. Semchenko; V. V. Sydsky. Alloyed zinc oxide thin films for the conversion of the silicon solar cells spectrum. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 32-38. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a4/

[1] C. Jagadish, S. Pearton, Zinc oxide bulk, thin films and nanostructures processing, properties and applications, Elsevier, 2006, 589 pp.

[2] S. O'Brien et al., “Zinc oxide thin films: characterization and potential applications”, Thin Solid Films, 518:16 (2010), 4515–4519 | DOI

[3] M. Sathya et al., “Growth of pure and doped ZnO thin films for solar cell applications”, Advances in Applied Science Research, 3:5 (2012), 2591–2598

[4] S.K. Pandal, C. Jacob, “Preparation of transparent ZnO thin films and their application in UV sensor devices”, Solid-State Electronics, 73 (2012), 44–50 | DOI

[5] J. Lu et al., “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD”, Materials Science in Semiconductor Processing, 5:6 (2002), 491–496 | DOI

[6] Y.W. Heo et al., “Transport properties of phosphorus-doped ZnO thin films”, Appl. Phys. Lett., 83 (2003), 1128 | DOI

[7] C. Singha, E. Panda, “Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry”, RSC Adv., 6 (2016), 48910–48918 | DOI

[8] A.J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics”, Progress in Quantum Electronics, 26:4–5 (2002), 225–284 | DOI

[9] J.H.L. Voncken, The Rare Earth Elements, Springer, 2016, 125 pp.

[10] A.J. Steckl, J.M. Zavada, “Photonic applications of rare-earth-doped materials”, MRS Bulletin, 24:9 (1999), 16–20 | DOI

[11] Y. Yang et al., “Rare-Earth doped ZnO films: a material platform to realize multicolor and near-infrared electroluminescence”, Advance optical materials, 2:3 (2014), 240–244 | DOI

[12] W.G.J.H.M. van Sarka, “Enhancing solar cell efficiency by using spectral converters”, Solar Energy Materials and Solar Cells, 87:1–4 (2005), 395–409

[13] C. Strumpel et al., “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials”, Sol. Energy Mater. Sol. Cells, 91 (2007), 238–249 | DOI

[14] D. Chen, Y. Wang, M. Hong, “Lanthanide nanomaterials with photon management characteristics for photovoltaic application”, Nano Energy, 2012, no. 1, 73–90 | DOI

[15] B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers”, Sol. En. Mat. Sol. Cell., 90 (2006), 2329 | DOI

[16] S.L. Luxembourg et al., “Application of a silicon nanocrystal downshifter to a c-Si solar cell”, Energy Procedia, 55 (2014), 190–196 | DOI

[17] Y. Shang et al., “Enhancing solar cell efficiency using photon upconversion materials”, Nanomaterials (Basel), 5:4 (2015), 1782–1809 | DOI

[18] Z. Jing, “Upconversion luminescent materials: advances and applications”, Chem. Rev., 115:1 (2015), 395–465 | DOI

[19] Z. Qu et al., “Photon upconversion in organic nanoparticles and subsequent amplification by plasmonic silver nanowires”, Nanoscale, 10 (2018), 985–991 | DOI

[20] I.P. Kuzmina, V.A. Nikitenko, Okis tsinka. Poluchenie i opticheskie svoistva, Nauka, M., 1984, 168 pp.

[21] Yu.M. Tairov i dr., Osnovy zol-gel-tekhnologii nanokompozitov, Tekhnomedia, Elmor, SPb., 2007, 255 pp.

[22] V.V. Malyutina-Bronskaya i dr., “Aktivnye sloi legirovannye redkozemelnymi metallami dlya povysheniya effektivnosti solnechnykh elementov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 4 (13), 26–29

[23] V.V. Malyutina-Bronskaya i dr., “Svoistva plenok ZnO:Er3+, poluchennykh zol-gel metodom”, Fizika i tekhnika poluprovodnikov, 51:3 (2017), 409–413