On finite semi-$p$-decomposable groups
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 41-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called $p$-decomposable if $G=O_{p'}(G)\times O_p(G)$. We say that a finite group $G$ is semi-$p$-decomposable if the normalizer of every non-normal $p$-decomposable subgroup of $G$ is $p$-decomposable. We prove the following Theorem. Suppose that a finite group $G$ is semi-$p$-decomposable. If a Sylow $p$-subgroup $P$ of $G$ is not normal in $G$, then the following conditions hold: (i) $G$ is $p$-soluble and $G$ has a normal Hall $p'$-subgroup $H$. (ii) $G/F(G)$ is $p$-decomposable. (iii) $O_{p'}(G)\times O_p(G)=H\times Z_\infty(G)$ is a maximal $p$-decomposable subgroup of $G$, and $G/H\times Z_\infty(G)$ is abelian.
Keywords: finite group, Sylow subgroup, Hall subgroup.
Mots-clés : $p$-soluble group, $p$-decomposable group
@article{PFMT_2018_1_a6,
     author = {N. M. Adarchenko and I. V. Bliznets and V. N. Rizhik},
     title = {On finite semi-$p$-decomposable groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {41--44},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a6/}
}
TY  - JOUR
AU  - N. M. Adarchenko
AU  - I. V. Bliznets
AU  - V. N. Rizhik
TI  - On finite semi-$p$-decomposable groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 41
EP  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a6/
LA  - ru
ID  - PFMT_2018_1_a6
ER  - 
%0 Journal Article
%A N. M. Adarchenko
%A I. V. Bliznets
%A V. N. Rizhik
%T On finite semi-$p$-decomposable groups
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 41-44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a6/
%G ru
%F PFMT_2018_1_a6
N. M. Adarchenko; I. V. Bliznets; V. N. Rizhik. On finite semi-$p$-decomposable groups. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 41-44. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a6/

[1] Sah Chih-Han, “On a generalization of finite nilpotent groups”, Math. Z., 68:1 (1957), 189–204 | DOI | MR | Zbl

[2] M. Weinstein, Between Nilpotent and Solvable, Polygonal Publishing House, 1982 | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[4] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[6] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968 | MR | Zbl

[7] A.N. Skiba, “On $\sigma$-properties of finite groups I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 89–96

[8] A.N. Skiba, “On $\sigma$-properties of finite groups II”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3(24), 70–83

[9] A.N. Skiba, “On $\sigma$-properties of finite groups III”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 52–62