On one generalization of the local formations
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite. Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$. The natural numbers $n$ and $m$ are called $\sigma$-coprime if for every $\sigma_i$ such that $\sigma_i\cap\pi(n)\ne\varnothing$ we have $\sigma_i\cap\pi(m)=\varnothing$. Let $t>1$ be a natural number and let $\mathfrak{F}$ be a class of groups. Then we say that $\mathfrak{F}$ is: (i) $S_\sigma^t$-closed (respectively weakly $S_\sigma^t$-closed) provided $\mathfrak{F}$ contains each finite group $G$ which satisfies the following conditions: (1) $G$ has subgroups $A_1,\dots,A_t\in\mathfrak{F}$ such that $G=A_iA_j$ for all $i\ne j$; (2) The indices $|G:N_G(A_1)|,\dots,|G:N_G(A_t)|$ (respectively the indices $|G:A_1|,\dots,|G:A_{t-1}|, |G:N_G(A_t)|$) are pairwise $\sigma$-coprime; (ii) $\mathcal{M}_\sigma^t$-closed (respectively weakly $\mathcal{M}_\sigma^t$-closed) provided $\mathfrak{F}$ contains each finite group $G$ which satisfies the following conditions: (1) $G$ has modular subgroups $A_1,\dots,A_t\in\mathfrak{F}$ such that $G=A_iA_j$ for all $i\ne j$; (2) The indices $|G:N_G(A_1)|,\dots,|G:N_G(A_t)|$ (respectively the indices $|G:A_1|,\dots,|G:A_{t-1}|, |G:N_G(A_t)|$) are pairwise $\sigma$-coprime. In this paper, we study properties and applications of (weakly) $S_\sigma^t$-closed and (weakly) $\mathcal{M}_\sigma^t$-closed classes of finite groups.
Keywords: finite group, formation $\sigma$-function, $\sigma$-local formation, (weakly) $S_\sigma^t$-closed class of groups, (weakly) $\mathcal{M}_\sigma^t$-closed class of groups.
@article{PFMT_2018_1_a13,
     author = {A. N. Skiba},
     title = {On one generalization of the local formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {79--82},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a13/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On one generalization of the local formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 79
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a13/
LA  - en
ID  - PFMT_2018_1_a13
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On one generalization of the local formations
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 79-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a13/
%G en
%F PFMT_2018_1_a13
A. N. Skiba. On one generalization of the local formations. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 79-82. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a13/

[1] A.N. Skiba, “On$\sigma$-properties of finite groups I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 89–96

[2] A.N. Skiba, “On$\sigma$-properties of finite groups II”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3(24), 70–83

[3] A.N. Skiba, “On $\sigma$-properties of finite groups III”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 52–62

[4] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[5] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[6] A.N. Skiba, On $\sigma$-local formations of finite groups, Preprint, 2017

[7] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[8] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1978 | MR | Zbl

[9] O.-U. Kramer, “Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes”, Math. Z., 139:1 (1974), 63–68 | DOI | MR | Zbl

[10] A.N. Skiba, A generalization of the Kramer's theory, Preprint, 2017

[11] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[12] W. Guo, A.N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl

[13] K. Doerk, “Minimal nicht überauflösbare, endliche Gruppen”, Math. Z., 91 (1966), 198–205 | DOI | MR | Zbl

[14] D. Friesen, “Products of normal supersoluble subgroups”, Proc. Amer. Math. Soc., 30 (1971), 46–48 | DOI | MR | Zbl

[15] H. Wielandt, “Über die Normalstrukture von mehrfach faktorisierbaren Gruppen”, B. Austral Math. Soc., 1 (1960), 143–146 | DOI | MR | Zbl

[16] O.H. Kegel, “Zur Struktur mehrfach faktorisierbarer endlicher Gruppen”, Math. Z., 87 (1965), 409–434 | DOI | MR