Speed of convergence of quadratic Hermite--Pad\'e approximations confluent hypergeometric functions
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 71-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The speed of convergence (including non-diagonal) of quadratic Hermite–Padé approximations of the system of the second kind $\{_1F_1(1,\gamma;\lambda_jz)\}^2_{j=1}$ is found. It consists of two degenerate hypergeometric functions when $\{\lambda_j\}_{j=1}^2$ are arbitrary distinct complex numbers, and $\gamma\in\mathbb{C}\setminus\{0, -1, -2,\dots\}$. These proved theorems supplement and generalize the results obtained earlier by other authors.
Keywords: Hermite integrals, Hermite–Padé polynomials, Taylor series, Hermite–Padé approximations, asymptotic equality.
@article{PFMT_2018_1_a12,
     author = {M. V. Sidortsov and A. A. Drapeza and A. P. Starovoitov},
     title = {Speed of convergence of quadratic {Hermite--Pad\'e} approximations confluent hypergeometric functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {71--78},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a12/}
}
TY  - JOUR
AU  - M. V. Sidortsov
AU  - A. A. Drapeza
AU  - A. P. Starovoitov
TI  - Speed of convergence of quadratic Hermite--Pad\'e approximations confluent hypergeometric functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 71
EP  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a12/
LA  - ru
ID  - PFMT_2018_1_a12
ER  - 
%0 Journal Article
%A M. V. Sidortsov
%A A. A. Drapeza
%A A. P. Starovoitov
%T Speed of convergence of quadratic Hermite--Pad\'e approximations confluent hypergeometric functions
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 71-78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a12/
%G ru
%F PFMT_2018_1_a12
M. V. Sidortsov; A. A. Drapeza; A. P. Starovoitov. Speed of convergence of quadratic Hermite--Pad\'e approximations confluent hypergeometric functions. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 71-78. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a12/

[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[2] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293

[3] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus, I, II”, J. Reine Angew. Math., 166 (1931), 118–150 | MR

[4] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade. 1. Osnovy teorii. 2. Obobscheniya i prilozheniya, Mir, M., 1986

[5] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, v 2-kh tomakh, v. 1, Arifmetika. Algebra. Analiz, Nauka, M., 1987

[6] A.I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in Approximation Theory, eds. A.A. Gonchar, E.B. Saff, Springer-Verlag, New York–Berlin, 1992 | MR | Zbl

[7] A.I. Aptekarev, V.I. Buslaev, A. Martines-Finkelshtein, S.P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6(402) (2011), 37–122 | DOI | Zbl

[8] A.I. Aptekarev, A.E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, Uspekhi matem. nauk, 66:6(402) (2011), 123–190 | DOI | Zbl

[9] S.P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | Zbl

[10] S.P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, Uspekhi matem. nauk, 70:5(425) (2015), 121–174 | DOI | Zbl

[11] A.V. Komlov, R.V. Palvelev, S.P. Suetin, E.M. Chirka, “Approksimatsii Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, Uspekhi matem. nauk, 72:4(436) (2017), 95–130 | DOI

[12] W. Van Assche, “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., 236, Amer. Math. Soc., 1999, 325–342 | DOI | Zbl

[13] V.I. Buslaev, S.P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Trudy MIAN im. V.A. Steklova, 290, 2015, 272–279 | DOI | Zbl

[14] A.V. Komlov, S.P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade”, Uspekhi matem. nauk, 70:6(426) (2015), 211–212 | DOI

[15] A.V. Komlov, N.G. Kruzhilin, R.V. Palvelev, S.P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, Uspekhi matem. nauk, 71:2(428) (2016), 205–206 | DOI

[16] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig–Berlin, 1929 | MR | Zbl

[17] A.I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 1, 68–74

[18] A.B J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl

[19] A.P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Izvestiya vuzov. Matematika, 2014, no. 9, 59–68

[20] A.P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:1(2) (2013), 88–91 | Zbl

[21] H. Van Rossum, “Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table I, II and III”, K. Nederl. Akad. Wetensch., Ser. A, 58 (1955), 517–534 ; 675–682 | DOI | MR | Zbl

[22] M.G. De Bruin, “Convergence of the Padé table for ${}_1F_1(1;c;x)$”, K. Nederl. Akad. Wetensch., 79 (1976), 408–418 | DOI | MR | Zbl

[23] A.P. Starovoitov, N.A. Starovoitova, “Approksimatsii Pade funktsii Mittag–Lefflera”, Matem. sbornik, 198:7 (2007), 109–122 | DOI | Zbl

[24] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[25] A.I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\{_1F_1(1;c;\lambda_iz)\}_{i=1}^k$”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 2, 58–62

[26] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989

[27] A.V. Astafeva, A.P. Starovoitov, “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Matem. sbornik, 207:6 (2016), 3–26 | DOI

[28] M.V. Sidortsov, A.A. Drapeza, A.P. Starovoitov, “Asimptotika diagonalnykh mnogochlenov Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Matem. zametki, 102:2 (2017), 302–315 | DOI | Zbl

[29] A.P. Starovoitov, E.P. Kechko, “O nekotorykh svoistvakh approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Trudy MIAN im. V. A. Steklova, 298, 2017, 338–355 | DOI | Zbl

[30] D. Braess, “Nondiagonal Hermite–Padé approximation to the exponential funstion”, J. of Comput. and Appl. Math., 65 (1995), 125–134 | DOI | MR

[31] F. Wielonsky, “Asymptotics of Diagonal Hermite–Padé Approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl

[32] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 2002, no. 14, 193–220 | MR

[33] A.B.J. Kuijlaars, W. Van Assche, F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hilbert approach”, Constr. Approx., 21 (2005), 351–412 | DOI | MR | Zbl

[34] A.P. Starovoitov, E.P. Kechko, “Verkhnie otsenki modulei nulei approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Matem. zametki, 99:3 (2016), 409–420 | DOI | Zbl

[35] A.P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 81–87