Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_1_a0, author = {V. V. Andreev and V. Yu. Haurysh and A. F. Krutov}, title = {Method of calculation of electroweak characteristics of mesons in the {Poincar\'e} invariant quantum mechanics}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--19}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/} }
TY - JOUR AU - V. V. Andreev AU - V. Yu. Haurysh AU - A. F. Krutov TI - Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 7 EP - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/ LA - ru ID - PFMT_2018_1_a0 ER -
%0 Journal Article %A V. V. Andreev %A V. Yu. Haurysh %A A. F. Krutov %T Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics %J Problemy fiziki, matematiki i tehniki %D 2018 %P 7-19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/ %G ru %F PFMT_2018_1_a0
V. V. Andreev; V. Yu. Haurysh; A. F. Krutov. Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 7-19. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/
[1] A. Krutov, V. Troitsky, “Instant form of Poincare-invariant quantum mechanics and description of the structure of composite systems”, Physics of Particles and Nuclei, 40:2 (2009), 136–161 | DOI
[2] W. N. Polyzou et al., “Mini review of Poincare invariant quantum theory”, Few Body Syst., 49 (2011), 129–147 | DOI
[3] V.V. Andreev, “QCD coupling constant below 1 GeV in the Poincare-covariant model”, Physics of Particles and Nuclei Letters, 8:4 (2011), 347–355 | DOI | MR
[4] F. Coester, W.N. Polyzou, “Relativistic quantum mechanics of particles with direct interactions”, Phys. Rev., D26 (1982), 1348–1367 | MR
[5] W.N. Polyzou, “Relativistic two-body models”, Annals of Physics, 193:2 (1989), 367–418 | DOI | MR
[6] B. Bakamjian, L.H. Thomas, “Relativistic Particle Dynamics. II”, Phys. Rev., 92:5 (1953), 1300–1310 | DOI | MR | Zbl
[7] B. Bakamjian, “Relativistic Particle Dynamics”, Phys. Rev., 121:6 (1961), 1849–1851 | DOI | MR | Zbl
[8] S.N. Sokolov, “Relyativistskoe slozhenie pryamykh vazimodeistvii v tochechnoi forme dinamiki”, TMF, 36:2 (1978), 193–207
[9] B.D. Keister, W.N. Polyzou, “Relativistic Hamiltonian dynamics in nuclear and particle physics”, Adv. Nucl. Phys., 20 (1991), 225–479
[10] T. Lin, C. Elster, W.N. Polyzou, W. Glockle, “First Order Relativistic Three-Body Scattering”, Phys. Rev., C76 (2007), 014010
[11] V. V. Andreev, Elektroslabye kharakteristiki kvantovykh sistem v puankare-kovariantnykh modelyakh, Lap Lambert Academic Publishing, 2017, 320 pp.
[12] H.A. Bete, E.E. Salpeter, “A relativistic equation for bound-state problems”, Phys. Rev., 84:2 (1951), 1232–1242 | MR
[13] E.E. Salpeter, “Mass-corrections to the fine structure of Hydrogen-like atoms”, Phys. Rev., 87:2 (1952), 328–343 | DOI | Zbl
[14] A.A. Logunov, O.A. Khrustalev, “Veroyatnostnoe opisanie rasseyaniya pri vysokikh energiyakh i gladkii kvazipotentsial”, EChAYa, 1:1 (1970), 71–90
[15] V.G. Kadyshevskii, R.M. Mir-Kasimov, N.B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690
[16] E. Eichten et al., “Spectrum of Charmed Quark-Antiquark Bound States”, Phys. Rev. Lett., 34 (1975), 369–372 | DOI
[17] A.E. Dorokhov, “Spin effects in instanton model”, Czech. J. Phys., 52 (2002), C79–C89 | DOI
[18] M.D. Scadron, F. Kleefeld, G. Rupp, E. van Beveren, “Meson form-factors and the quark-based linear sigma model”, Fizika, B13 (2004), 43–56
[19] V.V. Andreev, Puankare-kovariantnye modeli dvukhchastichnykh sistem s kvantovopolevymi potentsialami, UO «Gomelskii gosudarstvennyi universitet im. F. Skoriny», Gomel, 2008, 294 pp.
[20] F. Cardarelli et al., “Hard constituent quarks and electroweak properties of pseudoscalar mesons”, Phys. Lett., B332 (1994), 1–7 | DOI
[21] P.L. Chung, F. Coester, W.N. Polyzou, “Charge form-factors of quark model pions”, Phys. Lett., B205 (1988), 545–548 | DOI
[22] F. Coester, W.N. Polyzou, “Charge form factors of quarkmodel pions”, Phys. Rev., C71 (2005), 028202
[23] F. Schlumpf, “Charge form-factors of pseudoscalar mesons”, Phys. Rev., D50 (1994), 6895–6898
[24] W. Jaus, “Relativistic constituent quark model of electroweak properties of light mesons”, Phys. Rev., D44 (1991), 2851–2859
[25] W. Jaus, “Semileptonic decays of B and D mesons in the light front formalism”, Phys. Rev., D41 (1990), 3394
[26] S. Simula, “Comparison among Hamiltonian light-front formalisms at q+ =0 and q+ not = 0: Space-like elastic form factors of pseudoscalar and vector mesons”, Phys. Rev., C66 (2002), 035201
[27] A.A. Cheshkov, Yu.M. Shirokov, “Invariantnaya parametrizatsiya lokalnykh operatorov”, ZhETF, 44:6 (1963), 1982–1992
[28] A.F. Krutov, V.E. Troitsky, “Relativistic instant-form approach to the structure of two-body composite systems”, Phys. Rev. C, 2002, 045501 | DOI
[29] A.F. Krutov, V.E. Troitsky, “Relativistic properties of spin and pion electromagnetic structure”, J. High Energy Physics, 10 (1999), 028 | DOI
[30] A.F. Krutov, “Elektroslabye svoistva legkikh mezonov v relyativistskoi modeli sostavnykh kvarkov”, YaF, 60:8 (1997), 1442–1450
[31] A.F. Krutov, V.E. Troitskii, “Postroenie formfaktorov sostavnykh sistem s pomoschyu obobschennoi teoremy Vignera–Ekkarta dlya gruppy Puankare”, Teoreticheskaya i matematicheskaya fizika, 143:2 (2005), 258–277 | DOI | Zbl
[32] B. Desplanques, L. Theussl, “Form factors in the ‘point form’ of relativistic quantum mechanics: Single and two-particle currents”, Eur. Phys. J., A21 (2004), 93 | DOI
[33] B. Desplanques, L. Theussl, S. Noguera, “Effective boost and ‘pointform’ approach”, Phys. Rev., C65 (2002), 038202
[34] L. Theussl, A. Amghar, B. Desplanques, S. Noguera, “Comparison of different boost transformations for the calculation of form factors in relativistic quantum mechanics”, Few Body Syst. Suppl., 14 (2003), 393 | DOI
[35] A. Amghar, B. Desplanques, L. Theussl, “The form factor of the pion in ‘point-form’ of relativistic dynamics revisited”, Phys. Lett., B574 (2003), 201–209 | DOI
[36] B. Desplanques, “Dirac's inspired point form and hadron form factors”, Nucl. Phys., A755 (2005), 303–306 | DOI
[37] B. Desplanques, “Nucleon and pion form factors in different forms of relativistic quantum mechanics”, Int. J. Mod. Phys., A20 (2005), 1601–1606 | DOI
[38] B. Desplanques, “Relativistic quantum mechanics: A Dirac's point-form inspired approach”, Nucl. Phys., A748 (2005), 139–167 | DOI
[39] M.B. Menskii, Metod indutsirovannykh predstavlenii. Prostranstvo-vremya i kontseptsiya chastits, Nauka, 1976, 145 pp.
[40] Yu.V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972, 472 pp.
[41] F.I. Fedorov, Gruppa Lorentsa, Nauka, M., 1979, 384 pp.
[42] P.A.M. Dirac, “Forms of relativistic dynamics”, Rev. of Modern Phys., 21 (1949), 392–399 | DOI | MR | Zbl
[43] H.-C. Pauli, “On the effective Hamiltonian for QCD: An overview and status report”, Nucl. Phys. Proc. Suppl., 108 (2002), 273–280 | DOI | Zbl
[44] V.B. Berestetskii, M.V. Terentev, “Dinamika svetovogo fronta i nuklony iz relyativistskikh kvarkov”, Yadernaya fizika, 24:5 (1977), 1044–1057
[45] L.A. Kondratyuk, M.V. Terentev, “Zadacha rasseyaniya dlya relyativistskikh sistem s fiksirovannym chislom chastits v dinamike na svetovom fronte”, Yadernaya fizika, 31:4 (1980), 1087–1106
[46] M.V. Terentev, “O strukture volnovykh funktsii mezonov kak svyazannykh sostoyanii relyativistskikh kvarkov”, Yadernaya fizika, 25:1 (1976), 207–213
[47] T.W. Allen, W.H. Klink, “Pion charge form factor in point form relativistic dynamics”, Phys. Rev., C58 (1998), 3670–3673
[48] V.V. Andreev, “Opisanie leptonnykh raspadov v ramkakh puankare-kovariantnoi kvarkovoi modeli”, Vestsi NAH Belarusi. Ser. fiz.-mat. navuk, 2000, no. 2, 93–98
[49] W.H. Klink, Point form electrodynamics and the construction of conserved current operators, 2000, arXiv: (Date of access: 14.01.2008) nucl-th/0012033
[50] B.D. Keister, “Heavy quark symmetry and Dirac's point form dynamics”, Phys. Rev., D46 (1992), 3188–3194
[51] W.H. Klink, “Constructing Point Form Mass Operators from Interaction Lagrangians”, Nucl. Phys., A716 (2003), 123–135 | DOI | Zbl
[52] S.M. Bilenkii, Vvedenie v diagrammy Feinmana i fiziku elektroslabogo vzaimodeistviya, Energoatomizdat, M., 1990, 327 pp.
[53] W. Lucha, H. Rupprecht, F.F. Schoberl, “Relativistic treatment of fermion anti-fermion bound states”, Phys. Rev., D44 (1991), 242–249
[54] D. Ebert, R. Faustov, V. Galkin, “Radiative M1 decays of heavy light mesons in the relativistic quark model”, Phys. Lett., B537 (2002), 241–248 | DOI
[55] D.-S. Hwang, G.-H. Kim, “Decay constants of B, B* and D, D* mesons in relativistic mock meson model”, Phys. Rev., D55 (1997), 6944–6951
[56] H. Negash, S. Bhatnagar, “Radiative decay widths of ground and excited states of vector charmonium and bottomonium”, Adv. High Energy Phys., 2017 (2017), 7306825 | DOI
[57] V.V. Andreev, A.F. Krutov, “Elektromagnitnye form-faktory mezonov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 7–19