Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 7-19

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the point form of Poincaré-invariant quantum mechanics, a method for calculating the formsfactors and the decay constants of mesons, as relativistic coupled quark systems, is presented. As an example of the developed technique, an integral representation of the radiative decay constant of a vector meson $V\to P\gamma$ is obtained.
Keywords: quark, Poincaré-invariant quantum mechanics, form factor, decay constant.
@article{PFMT_2018_1_a0,
     author = {V. V. Andreev and V. Yu. Haurysh and A. F. Krutov},
     title = {Method of calculation of electroweak characteristics of mesons in the {Poincar\'e} invariant quantum mechanics},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--19},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
AU  - V. Yu. Haurysh
AU  - A. F. Krutov
TI  - Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 7
EP  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/
LA  - ru
ID  - PFMT_2018_1_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%A V. Yu. Haurysh
%A A. F. Krutov
%T Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 7-19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/
%G ru
%F PFMT_2018_1_a0
V. V. Andreev; V. Yu. Haurysh; A. F. Krutov. Method of calculation of electroweak characteristics of mesons in the Poincar\'e invariant quantum mechanics. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 7-19. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a0/