Finite groups with $H_\sigma$-subnormally embedded subgroups
Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Пусть $G$ be a finite group. Let $\sigma=\{\sigma_i| i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $n$ an integer. We write $\sigma(n)=\{\sigma_i |\sigma_i\cap \pi(n)\ne\varnothing\}$, $\sigma(G)=\sigma(|G|)$. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma$-set of $G$ if every member of $\mathcal{H}\setminus\{1\}$ is a Hall $\sigma_i$-subgroup of $G$ for some $\sigma_i$ and $\mathcal{H}$ contains exact one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\sigma(G)$. A subgroup $A$ of $G$ is called a $\sigma$-Hall subgroup of $G$ if $\sigma(|A|)\cap\sigma(|G:A|)=\varnothing$. We say that a subgroup $A$ of $G$ is $H_\sigma$-subnormally embedded in $G$ if $A$ is a $\sigma$-Hall subgroup of some $\sigma$-subnormal subgroup of $G$.
Keywords: finite group, $\sigma$-subnormal subgroup, $\sigma$-permutable subgroup, $\sigma$-Hall subgroup, $H_\sigma$-subnormally embedded subgroup.
@article{PFMT_2017_4_a14,
     author = {D. A. Sinitsa and A. N. Skiba and W. Guo and Chi Zhang},
     title = {Finite groups with $H_\sigma$-subnormally embedded subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--88},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_4_a14/}
}
TY  - JOUR
AU  - D. A. Sinitsa
AU  - A. N. Skiba
AU  - W. Guo
AU  - Chi Zhang
TI  - Finite groups with $H_\sigma$-subnormally embedded subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 84
EP  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_4_a14/
LA  - ru
ID  - PFMT_2017_4_a14
ER  - 
%0 Journal Article
%A D. A. Sinitsa
%A A. N. Skiba
%A W. Guo
%A Chi Zhang
%T Finite groups with $H_\sigma$-subnormally embedded subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 84-88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_4_a14/
%G ru
%F PFMT_2017_4_a14
D. A. Sinitsa; A. N. Skiba; W. Guo; Chi Zhang. Finite groups with $H_\sigma$-subnormally embedded subgroups. Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 84-88. http://geodesic.mathdoc.fr/item/PFMT_2017_4_a14/

[1] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[3] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Appl., 15:4 (2015), 21–36 | MR

[4] W. Guo, A.N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl

[5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[6] S. Li, J. He, G. Nong, L. Zhou, “On Hall normally embedded subgroups of finite groups”, Comm. Algebra, 37 (2009), 3360–3367 | DOI | MR | Zbl

[7] S. Li, J. Liu, “On Hall subnormally embedded and generalized nilpotent groups”, J. Algebra, 388 (2013), 1–9 | DOI | MR | Zbl

[8] S. Li, J. Lio, “CLT-groups with Hall S-quasinormally embedded subgroups”, Ukrain. Math. Journal, 66 (2014), 1281–1287 | DOI | MR

[9] A. Ballester-Bolinches, Shou Homg Qiao, “On a problem posed by S. Li and J. Liu”, Arch. Math., 102 (2014), 109–111 | DOI | MR | Zbl

[10] D.A. Sinitsa, “A note on Hall $S$-permutably embedded subgroups of finite groups”, Algebra and discrete mathematics, 23:2 (2017), 305–311 | MR | Zbl

[11] W. Guo, C. Zhang, A.N. Skiba, D.A. Sinitsa, On $H_\sigma$-permutably embedded and $H_\sigma$-subnormaly embedded subgroups of finite groups, 2017, 15 pp., arXiv: 1701.05134 | MR