Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_4_a0, author = {S. S. Girgel}, title = {Polarizing and power properties of vectorial gaussian{\textendash}like beams. {II.} {Non-homogeneous} polarization}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--10}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/} }
TY - JOUR AU - S. S. Girgel TI - Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 7 EP - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/ LA - ru ID - PFMT_2017_4_a0 ER -
S. S. Girgel. Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization. Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/
[1] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24
[2] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14
[3] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3(12), 19–24
[4] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 1–5
[5] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.
[6] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.
[7] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2006, no. 6(39)-1, 49–52
[8] M.A. Bandres, J.C. Gutierres-Vega, “Vector Helmholtz–Gauss and vector Laplace–Gauss beams”, Optics Letters, 30:16 (2005), 2155–2157 | DOI | MR
[9] L. Allen, M. I. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density”, Opt. Commun., 184:1–4 (2000), 67–71 | DOI