Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization
Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formalism for the description of vector paraxial light beams is extended to Gaussian-like with non-homogeneous polarization, including the general TM and TE modes. Simple expressions for polarization and the energy flux density of an electromagnetic field of such beams are discovered. The carried-out graphic modeling of polarizing and power properties of vector Gaussian-like TM beams confirms and calculations supplements analytical.
Keywords: paraxial beams, vector beams, Gaussian-like beams, polarizable properties, energy properties, non-homogeneous polarization.
Mots-clés : TE modes, TM modes
@article{PFMT_2017_4_a0,
     author = {S. S. Girgel},
     title = {Polarizing and power properties of vectorial gaussian{\textendash}like beams. {II.} {Non-homogeneous} polarization},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--10},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 7
EP  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/
LA  - ru
ID  - PFMT_2017_4_a0
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 7-10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/
%G ru
%F PFMT_2017_4_a0
S. S. Girgel. Polarizing and power properties of vectorial gaussian–like beams. II. Non-homogeneous polarization. Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2017_4_a0/

[1] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24

[2] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14

[3] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3(12), 19–24

[4] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 1–5

[5] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.

[6] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[7] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2006, no. 6(39)-1, 49–52

[8] M.A. Bandres, J.C. Gutierres-Vega, “Vector Helmholtz–Gauss and vector Laplace–Gauss beams”, Optics Letters, 30:16 (2005), 2155–2157 | DOI | MR

[9] L. Allen, M. I. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density”, Opt. Commun., 184:1–4 (2000), 67–71 | DOI