On the intersections of maximal subgroups of finite groups containing formation radicals
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 36-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonempty radical formation $\mathfrak{F}$ and a finite group $G$ the following statement was proved: if there exist maximal subgroups of $G$ containing $G_{\mathfrak{F}}$, but not containing $G_{\mathfrak{FN}}$, that is $\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\ne G$, and the factor group $\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)\cap \Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}\subseteq\mathrm{F}_{\Phi_{G_{\mathfrak{F}}}}(G)$. In particular, if $G\ne G_{\mathfrak{F}}$ and $\mathrm{Soc}(G/\Phi_{G_{\mathfrak{F}}}(G))=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)/\Phi_{G_{\mathfrak{F}}}(G)$ is solvable, then $\Phi_{G_{\mathfrak{F}}}(G)=\Phi_{G_{\mathfrak{F}},\overline{G_{\mathfrak{FN}}}}(G)\subset G_{\mathfrak{FN}}=\tilde{\mathrm{F}}_{\Phi_{G_{\mathfrak{F}}}}(G)$. The corresponding consequences were obtained for products of non-empty radical formations, in particular for $\mathfrak{F}=\mathfrak{N}^{n-1}$, $n$ is any natural number.
Keywords: radical formations of finite groups, products of radical formations, $\mathfrak{F}$-radicals, intersections of maximal subgroups.
@article{PFMT_2017_3_a5,
     author = {L. M. Belokon},
     title = {On the intersections of maximal subgroups of finite groups containing formation radicals},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--42},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a5/}
}
TY  - JOUR
AU  - L. M. Belokon
TI  - On the intersections of maximal subgroups of finite groups containing formation radicals
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 36
EP  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a5/
LA  - ru
ID  - PFMT_2017_3_a5
ER  - 
%0 Journal Article
%A L. M. Belokon
%T On the intersections of maximal subgroups of finite groups containing formation radicals
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 36-42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a5/
%G ru
%F PFMT_2017_3_a5
L. M. Belokon. On the intersections of maximal subgroups of finite groups containing formation radicals. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 36-42. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a5/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[2] B. Nuppert, N. Blackburn, Finite groups III, Springer-Verlag, Berlin–Heidelberg–New York, 1982, 454 pp. | MR

[3] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[4] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp.

[5] L. M. Belokon, “Peresecheniya maksimalnykh podgrupp konechnykh grupp i radikalnye formatsii”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2013, no. 6(81), 3–10

[6] L. M. Belokon, “O peresecheniyakh maksimalnykh podgrupp konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 46–59

[7] V. S. Monakhov, “Zamechaniya o maksimalnykh podgruppakh konechnykh grupp”, Doklady NAN Belarusi, 2003, no. 4(47), 31–33