Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_3_a10, author = {V. M. Selkin and A. N. Skiba}, title = {On $\sigma$-permutable subgroups of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {61--65}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/} }
V. M. Selkin; A. N. Skiba. On $\sigma$-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/
[1] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl
[2] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[3] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978 | MR | Zbl
[4] W. Guo, A. N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl
[5] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006 | MR | Zbl
[6] A. N. Skiba, “On $\sigma$-properties of finite groups I”, Probl. Phys. Math. Tech., 2014, no. 4(21), 89–96 | MR | Zbl
[7] A. N. Skiba, On the lattice of the $\sigma$-permutable subgroups of a finite group, arXiv: 1703.01773 [math.GR] | MR
[8] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl
[9] O. H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[10] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl
[11] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[12] R. K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47 (1975), 77–83 | DOI | MR | Zbl
[13] D. J. S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–159 | DOI | MR | Zbl
[14] R. A. Brice, J. Cossey, “The Wielandt subgroup of a finite soluble groups”, J. London Math. Soc., 40 (1989), 244–256 | DOI | MR
[15] X. Yi, A. N. Skiba, “Some new characterizations of PST-groups”, J. Algebra, 399 (2014), 39–54 | DOI | MR | Zbl
[16] A. N. Skiba, Characterizations of some classes of finite $\sigma$-soluble $P\sigma T$-groups, arXiv: 1704.02509 [math.GR]
[17] A. N. Skiba, A Robinson characterization of finite $P\sigma T$-groups, Preprint, 2017
[18] V. A. Vedernikov, “On some classes of finite groups”, Dokl. Akad. Nauk Belarusi, 32:10 (1988), 872–875 | MR | Zbl
[19] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[20] P. Schmid, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 207 (1998), 285–293 | DOI | MR | Zbl
[21] G. Pazderski, “On groups for which the lattice of normal subgroups is distributive”, Beiträge Algebra Geom., 24 (1987), 185–200 | MR | Zbl
[22] A. N. Skiba, “On finite groups for which the lattice of $S$-permutable subgroups is distributive”, Arch. Math., 109 (2017), 9–17 | DOI | MR | Zbl
[23] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl