On $\sigma$-permutable subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 61-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\sigma_i \mid i\in I\}$ be some partition of the set of all primes $\mathbb{P}$ and let $G$ be a finite group. $G$ is said to be $\sigma$-full if $G$ has a Hall $\sigma_i$-subgroup for all $i$. A subgroup $A$ of $G$ is said to be $\sigma$-permutable in $G$ if $G$ is $\sigma$-full and $A$ permutes with all Hall $\sigma_i$-subgroups $H$ of $G$ (that is, $AH=HA$) for all $i$. In this paper, we give a survey of some recent results on $\sigma$-permutable subgroups of finite groups.
Keywords: finite group, a Robinson $\sigma$-complex of a group, $\sigma$-permutable subgroup, $\sigma$-supersoluble group
Mots-clés : $\sigma$-soluble group, $\sigma$-CS-group.
@article{PFMT_2017_3_a10,
     author = {V. M. Selkin and A. N. Skiba},
     title = {On $\sigma$-permutable subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--65},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/}
}
TY  - JOUR
AU  - V. M. Selkin
AU  - A. N. Skiba
TI  - On $\sigma$-permutable subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 61
EP  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/
LA  - en
ID  - PFMT_2017_3_a10
ER  - 
%0 Journal Article
%A V. M. Selkin
%A A. N. Skiba
%T On $\sigma$-permutable subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 61-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/
%G en
%F PFMT_2017_3_a10
V. M. Selkin; A. N. Skiba. On $\sigma$-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a10/