A criterion for a finite group to belong a saturated formation
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 46-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following result: Let $\mathcal{F}$ be a hereditary saturated formation of $p$-soluble groups containing all $p$-supersoluble groups such that $\mathcal{F}=\mathcal{G}_p\mathcal{F}$. Let $G=AT$ where $A$ is a Hall $\pi$-subgroup of $G$, $p\notin\pi$ and $T$ is a $p$-supersoluble subgroup of $G$. Suppose that for a Sylow $p$-subgroup $P$ of $T$ we have $|P|>p$. If $A$ permutes with a Hall $p'$-subgroup of $T$ and with all maximal subgroups $V$ of $P$ such that $G^{\mathcal{F}}\cap P\not\leqslant V$, then $G\in\mathcal{F}$.
Keywords: finite group, saturated formation, $p$-supersoluble group, Hall subgroup.
Mots-clés : $p$-soluble group
@article{PFMT_2017_2_a7,
     author = {I. M. Dergacheva and I. P. Shabalina and E. A. Zadorozhnyuk},
     title = {A criterion for a finite group to belong a saturated formation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {46--49},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a7/}
}
TY  - JOUR
AU  - I. M. Dergacheva
AU  - I. P. Shabalina
AU  - E. A. Zadorozhnyuk
TI  - A criterion for a finite group to belong a saturated formation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 46
EP  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a7/
LA  - en
ID  - PFMT_2017_2_a7
ER  - 
%0 Journal Article
%A I. M. Dergacheva
%A I. P. Shabalina
%A E. A. Zadorozhnyuk
%T A criterion for a finite group to belong a saturated formation
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 46-49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a7/
%G en
%F PFMT_2017_2_a7
I. M. Dergacheva; I. P. Shabalina; E. A. Zadorozhnyuk. A criterion for a finite group to belong a saturated formation. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 46-49. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a7/

[1] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12:2 (1937), 188–200 | MR

[2] B. Huppert, “Zur Sylowstruktur auflosbarer Gruppen”, Arch. Math., 12 (1961), 161–169 | DOI | MR | Zbl

[3] V.I. Sergienko, “A criterion for the p-solubility of finite groups”, Mat. Zam., 9 (1971), 375–383 | MR | Zbl

[4] M.T. Borovikov, “Groups with permutable subgroups of mutually simple orders”, Questions of Alg., 5 (1990), 80–82 | Zbl

[5] W. Guo, A.N. Skiba, “Criteria of Existence of Hall Subgroups in Non-soluble Finite Groups”, Acta Math. Sinica, English Ser., 26:2 (2010), 295–304 | DOI | MR | Zbl

[6] W. Guo, K.P. Shum, A.N. Skiba, “Finite groups with some given systems of $X_m$-semipermutable subgroups”, Math. Nachr., 283 (2010), 1603–1612 | DOI | MR | Zbl

[7] X. Yi, A.N. Skiba, “On some generalizations of permutability and S-permutability”, Problems of Physics, Mathematics and Technics, 2013, no. 4(17), 47–54 | MR | Zbl

[8] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[10] W. Guo, The Theory of Classes of Groups, Science Press, Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000 | MR | Zbl

[11] A. Ballester-Bolinches, L.M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[12] O.H. Kegel, “Produkte nilpotenter Gruppen”, Arch. Math., 12 (1961), 90–93 | DOI | MR | Zbl

[13] V.N. Knyagina, V.S. Monakhov, “On $\pi'$-properties of finite group having a Hall $\pi$-subgroup”, Siberian Math. J., 2011, 234–243 | DOI | MR | Zbl

[14] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968 | MR | Zbl