Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_2_a6, author = {Bin Hu and Jianhong Huang and A. N. Skiba}, title = {Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {40--45}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/} }
TY - JOUR AU - Bin Hu AU - Jianhong Huang AU - A. N. Skiba TI - Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 40 EP - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/ LA - en ID - PFMT_2017_2_a6 ER -
Bin Hu; Jianhong Huang; A. N. Skiba. Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 40-45. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/
[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[2] O.H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[3] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl
[4] R. Schmidt, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg., 34 (1970), 115–125 | DOI | MR
[5] I. Zimmermann, “Submodular subgroups in finite Groups”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl
[6] V.A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | DOI | MR | Zbl
[7] Sh. Li, “Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups”, Math. Proc. Royal Irish Acad., 100 (2000), 65–71
[8] X. Guo, K.P. Shum, “Cover-avoidance properties and the structure of finite groups”, J. Pure and Appl. Algebra, 181 (2003), 297–308 | DOI | MR
[9] B. Li, A.N. Skiba, “New characterizations of finite supersoluble groups”, Sci. in China. Series A: Math., 50 (2008), 827–841 | MR
[10] V.N. Kniahina, V.S. Monakhov, “On the permutability of $n$-maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 125–130
[11] V.S. Monakhov, V.N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal subgroups”, Ricerche di Mat., 62:2 (2013), 307–322 | DOI | MR | Zbl
[12] V.A. Kovaleva, A.N. Skiba, “Finite soluble groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17 (2014), 273–290 | DOI | MR | Zbl
[13] V.A. Kovaleva, X. Yi, “Finite biprimary groups with all 3-maximal subgroups $U$-subnormal”, Acta Mat. Hung., 146 (2015), 47–55 | DOI | MR | Zbl
[14] V.A. Kovaleva, “Finite groups with given generalized maximal subgroups (review). I. Finite groups with generalized normal $n$-maximal subgroups”, Problems of Physics, Mathematics and Technics, 2016, no. 4(29), 48–58
[15] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg–New York–Dordrecht–London, 2015 | MR | Zbl
[16] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl
[17] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27:1 (1968), 167–173 | DOI | MR | Zbl
[18] A. Mann, “Finite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 132 (1968), 395–409 | MR | Zbl
[19] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[20] J. Huang, B. Hu, A.N. Skiba, Finite groups whose $n$-maximal subgroups are generalized subnormal, Preprint, 2016
[21] R.K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 54 (1976), 13–21 | DOI | MR
[22] J. Huang, B. Hu, X. Zheng, “Finite groups whose $n$-maximal subgroups are modular”, Siberian Math. J. (to appear)
[23] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[24] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl