Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 40-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $M$ a subgroup of $G$. Then $M$ is called: modular in $G$ if the following conditions are held: (i) $\langle X, M\cap Z\rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z\rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant Z$; quasinormal (respectively $S$-quasinormal) in $G$ if $MP=PM$ for all subgroups (respectively for all Sylow subgroups) $P$ of $G$. We say that $M$ is a generalized subnormal (respectively generalized $S$-quasinormal) subgroup of $G$ if $H=\langle A, B\rangle$ for some modular subgroup $A$ and subnormal (respectively $S$-quasinormal) subgroup $B$ of $G$. If $M_n M_{n-1}\dots$, where $M_i$ is a maximal subgroup of $M_{i-1}$ for all $i=1,\dots,n$, then $M_n$ ($n>0$) is an $n$-maximal subgroup of $G$. In this paper, we study finite groups whose $n$-maximal subgroups are generalized subnormal or generalized $S$-quasinormal.
Keywords: finite group, $S$-quasinormal subgroup, modular subgroup, generalized subnormal subgroup, generalized $S$-quasinormal subgroup.
@article{PFMT_2017_2_a6,
     author = {Bin Hu and Jianhong Huang and A. N. Skiba},
     title = {Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--45},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/}
}
TY  - JOUR
AU  - Bin Hu
AU  - Jianhong Huang
AU  - A. N. Skiba
TI  - Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 40
EP  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/
LA  - en
ID  - PFMT_2017_2_a6
ER  - 
%0 Journal Article
%A Bin Hu
%A Jianhong Huang
%A A. N. Skiba
%T Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 40-45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/
%G en
%F PFMT_2017_2_a6
Bin Hu; Jianhong Huang; A. N. Skiba. Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 40-45. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/