Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 40-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $M$ a subgroup of $G$. Then $M$ is called: modular in $G$ if the following conditions are held: (i) $\langle X, M\cap Z\rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ such that $X\leqslant Z$, and (ii) $\langle M, Y\cap Z\rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ such that $M\leqslant Z$; quasinormal (respectively $S$-quasinormal) in $G$ if $MP=PM$ for all subgroups (respectively for all Sylow subgroups) $P$ of $G$. We say that $M$ is a generalized subnormal (respectively generalized $S$-quasinormal) subgroup of $G$ if $H=\langle A, B\rangle$ for some modular subgroup $A$ and subnormal (respectively $S$-quasinormal) subgroup $B$ of $G$. If $M_n M_{n-1}\dots$, where $M_i$ is a maximal subgroup of $M_{i-1}$ for all $i=1,\dots,n$, then $M_n$ ($n>0$) is an $n$-maximal subgroup of $G$. In this paper, we study finite groups whose $n$-maximal subgroups are generalized subnormal or generalized $S$-quasinormal.
Keywords: finite group, $S$-quasinormal subgroup, modular subgroup, generalized subnormal subgroup, generalized $S$-quasinormal subgroup.
@article{PFMT_2017_2_a6,
     author = {Bin Hu and Jianhong Huang and A. N. Skiba},
     title = {Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--45},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/}
}
TY  - JOUR
AU  - Bin Hu
AU  - Jianhong Huang
AU  - A. N. Skiba
TI  - Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 40
EP  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/
LA  - en
ID  - PFMT_2017_2_a6
ER  - 
%0 Journal Article
%A Bin Hu
%A Jianhong Huang
%A A. N. Skiba
%T Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 40-45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/
%G en
%F PFMT_2017_2_a6
Bin Hu; Jianhong Huang; A. N. Skiba. Finite groups whose $n$-maximal subgroups are generalized $S$-quasinormal. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 40-45. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a6/

[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[2] O.H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[3] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[4] R. Schmidt, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg., 34 (1970), 115–125 | DOI | MR

[5] I. Zimmermann, “Submodular subgroups in finite Groups”, Math. Z., 202 (1989), 545–557 | DOI | MR | Zbl

[6] V.A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | DOI | MR | Zbl

[7] Sh. Li, “Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups”, Math. Proc. Royal Irish Acad., 100 (2000), 65–71

[8] X. Guo, K.P. Shum, “Cover-avoidance properties and the structure of finite groups”, J. Pure and Appl. Algebra, 181 (2003), 297–308 | DOI | MR

[9] B. Li, A.N. Skiba, “New characterizations of finite supersoluble groups”, Sci. in China. Series A: Math., 50 (2008), 827–841 | MR

[10] V.N. Kniahina, V.S. Monakhov, “On the permutability of $n$-maximal subgroups with Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 125–130

[11] V.S. Monakhov, V.N. Kniahina, “Finite groups with $\mathbb{P}$-subnormal subgroups”, Ricerche di Mat., 62:2 (2013), 307–322 | DOI | MR | Zbl

[12] V.A. Kovaleva, A.N. Skiba, “Finite soluble groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17 (2014), 273–290 | DOI | MR | Zbl

[13] V.A. Kovaleva, X. Yi, “Finite biprimary groups with all 3-maximal subgroups $U$-subnormal”, Acta Mat. Hung., 146 (2015), 47–55 | DOI | MR | Zbl

[14] V.A. Kovaleva, “Finite groups with given generalized maximal subgroups (review). I. Finite groups with generalized normal $n$-maximal subgroups”, Problems of Physics, Mathematics and Technics, 2016, no. 4(29), 48–58

[15] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg–New York–Dordrecht–London, 2015 | MR | Zbl

[16] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[17] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27:1 (1968), 167–173 | DOI | MR | Zbl

[18] A. Mann, “Finite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 132 (1968), 395–409 | MR | Zbl

[19] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[20] J. Huang, B. Hu, A.N. Skiba, Finite groups whose $n$-maximal subgroups are generalized subnormal, Preprint, 2016

[21] R.K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 54 (1976), 13–21 | DOI | MR

[22] J. Huang, B. Hu, X. Zheng, “Finite groups whose $n$-maximal subgroups are modular”, Siberian Math. J. (to appear)

[23] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[24] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl