Influence of carbide-forming metals nature on the phase composition and structure of alloyed carbon coatings
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Structural-phase features of carbon coatings deposited from impulse cathode plasma doped with titanium and chromium are determined. It is established that metal-containing formations with an average size of $40..90$ nm are formed in the volume of an amorphous carbon matrix during electric arc evaporation of metals. The introduction of chromium into the carbon matrix leads to an increase in the content of carbon atoms in the $\mathrm{sp}^3$ state, doping the same carbon coating with titanium helps reduce the number of atoms with $\mathrm{sp}^3$ hybridization, increase in the size and ordering of $\mathrm{Csp}^2$ clusters.
Keywords: carbon coatings, alloyed, titanium, chromium, morphology.
Mots-clés : phase composition
@article{PFMT_2017_2_a4,
     author = {A. S. Rudenkov and A. V. Rogachev and D. G. Piliptsov and Xiaohong Jiang and N. N. Fedosenko},
     title = {Influence of carbide-forming metals nature on the phase composition and structure of alloyed carbon coatings},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {24--30},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a4/}
}
TY  - JOUR
AU  - A. S. Rudenkov
AU  - A. V. Rogachev
AU  - D. G. Piliptsov
AU  - Xiaohong Jiang
AU  - N. N. Fedosenko
TI  - Influence of carbide-forming metals nature on the phase composition and structure of alloyed carbon coatings
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 24
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a4/
LA  - ru
ID  - PFMT_2017_2_a4
ER  - 
%0 Journal Article
%A A. S. Rudenkov
%A A. V. Rogachev
%A D. G. Piliptsov
%A Xiaohong Jiang
%A N. N. Fedosenko
%T Influence of carbide-forming metals nature on the phase composition and structure of alloyed carbon coatings
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 24-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a4/
%G ru
%F PFMT_2017_2_a4
A. S. Rudenkov; A. V. Rogachev; D. G. Piliptsov; Xiaohong Jiang; N. N. Fedosenko. Influence of carbide-forming metals nature on the phase composition and structure of alloyed carbon coatings. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 24-30. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a4/

[1] Kl. Bewilogua, D. Hofmann, “History of diamond-like carbon films — From first experiments to worldwide applications”, Surface and Coatings Technology, 242 (2014), 214–225 | DOI

[2] A.V. Rogachev, “Tribotekhnicheskie svoistva kompozitsionnykh pokrytii, osazhdaemykh vakuumno-plazmennymi metodami”, Trenie i iznos, 29:3 (2008), 285–592

[3] C. Donnet, A. Erdemir, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer Science Business Media, 2007, 680 pp.

[4] C. Bauer et al., “Mechanical properties and performance of magnetron-sputtered graded diamond-like carbon films with and without metal additions”, Diamond and Related Materials, 11 (2002), 1139–1142 | DOI

[5] E. Broitman et al., “Mechanical and tribological properties of $CN_x$ films deposited by reactive magnetron sputtering”, Wear, 248 (2001), 55–64 | DOI

[6] X. Chen et al., “Microstructure, mechanical, and tribological properties of $CN_x$ thinfilms prepared by reactive magnetron sputtering”, Acta Matallurgic Sinica, 27 (2014), 31–36

[7] S.J. Bull, “Tribology of carbon coatings: DLC, diamond and beyond”, Diamond and Related Materials, 4 (1995), 827–836 | DOI

[8] C. Donnet, “Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review”, Surface and Coatings Technology, 100–101 (1998), 180–186 | DOI

[9] W. Zhang, A. Tanaka, B. Xu, Y. Koga, “Study on the diamond-like carbon multilayer films for tribological application”, Diamond and Related Materials, 14 (2005), 1361–1367 | DOI

[10] Y-H. Lin et al., “Structure and characterization of the multilayered Ti-DLC films by FCVA”, Diamond and Related Materials, 19 (2010), 1034–1039 | DOI

[11] B. Zhou et al., “Synthesis of diamond-like carbon film on copper and titanium interlayer by vacuum cathode arc evaporation”, Applied Mechanics and Materials, 189 (2012), 167–171 | DOI

[12] Q. Wei et al., “Preparation and mechanical properties of composite diamond-like carbon thin films”, Vac. Sci. Technol. A, 17 (1999), 3406–3414 | DOI

[13] X.H. Jiang et al., “Structure and mechanical properties of Ti alloyed DLC films”, Chinese J. Inorg. Mater., 17 (2002), 771–776

[14] M. Jelinek et al., “Chromium-doped DLC for implants prepared by laser-magnetron deposition”, Materials Science and Engineering C, 46 (2015), 381–386 | DOI

[15] Y.-T. Cheng, C.-M. Cheng, “Relationships between hardness, elastic modulus, and the work of indentation”, Applied Physics Letters, 73 (1998), 614–616 | DOI

[16] W. Dai, P. Ke, A. Wang, “Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique”, Vacuum, 85 (2011), 792–797 | DOI

[17] D. Martinez-Martinez et al., “Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coating”, Thin Solid Films, 517 (2009), 1662–1671 | DOI

[18] Zh. Xu et al., “The microstructure and mechanical properties of multilayer diamond-like carbon films with different modulation ratios”, Applied Surface Science, 264 (2013), 207–212 | DOI

[19] X. Peng, Z. Barber, T. Clyne, “Surface roughness of diamondlike carbon films prepared using various techniques”, Surface and Coatings Technology, 138 (2001), 23–32 | DOI