Relativistic bound $s$-states problem for superposition of two potentials «$\delta$-sphere» type
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 15-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact solutions of relativistic two-particle quasipotential type equations for bound states in the case of the potential «$\delta$-sphere» in the relativistic configuration representation and in the case of the superposition of two such potentials are considered. The signs of the coefficients in the $\delta$-potentials that allow the existence of bound states and the maximum possible number of this states are defined on the basis of the analysis of the energy quantization conditions.
Keywords: relativistic two-particle equation, relativistic configurational representation, delta-function potential, bound state, energy quantization condition.
@article{PFMT_2017_2_a2,
     author = {Yu. A. Grishechkin and V. N. Kapshai and M. S. Danilchenko},
     title = {Relativistic bound $s$-states problem for superposition of two potentials {\guillemotleft}$\delta$-sphere{\guillemotright} type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {15--19},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
AU  - M. S. Danilchenko
TI  - Relativistic bound $s$-states problem for superposition of two potentials «$\delta$-sphere» type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 15
EP  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a2/
LA  - ru
ID  - PFMT_2017_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%A M. S. Danilchenko
%T Relativistic bound $s$-states problem for superposition of two potentials «$\delta$-sphere» type
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 15-19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a2/
%G ru
%F PFMT_2017_2_a2
Yu. A. Grishechkin; V. N. Kapshai; M. S. Danilchenko. Relativistic bound $s$-states problem for superposition of two potentials «$\delta$-sphere» type. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 15-19. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a2/

[1] V.N. Kapshai, Yu.A. Grishechkin, “Relyativistskaya zadacha o $s$-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov «$\delta$-sfera»”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2(23), 7–12

[2] R. Navarro-Perez, J.E. Amaro, E. Ruiz-Arriola, “Effective Interactions in the delta-shells potential”, Few Body Syst., 54:7–10 (2013), 1487–1490 | DOI

[3] R. Navarro-Perez, J.E. Amaro, E. Ruiz-Arriola, “Phenomenological high precision neutron-proton delta-shell potential”, Phys. Lett. B, 724:1–3 (2013), 138–143 | DOI

[4] V.N. Kapshai, T.A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two potentials”, Russian Physics Journal, 45 (2002), 1–9 | DOI

[5] V.N. Kapshai, T.A. Alferova, “Razlozhenie po matrichnym elementam UNP gruppy Lorentsa i integralnye uravneniya dlya relyativistskikh volnovykh funktsii”, Sb. st., Kovariantnye metody v teoreticheskoi fizike, 4, In-t fiziki NAN Belarusi, Minsk, 1997, 88–95

[6] T.A. Alferova, V.N. Kapshai, “Expansion in terms of matrix elements of the Lorentz group unitary irreducible representations and integral equations for scattering states relativistic wave functions”, Nonlinear phenomena in complex systems, Proced. of the Sixth Annual Seminar NPCS'97, Academy of Sciences of Belarus. Inst. of Phys., Minsk, 1998, 78–85

[7] A.A. Logunov, A.N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[8] V.G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys., B6:1 (1968), 125–148 | DOI

[9] V.G. Kadyshevskii, R.M. Mir-Kasimov, N.B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690

[10] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975, 568 pp.