On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral classification of sequences of length $N = 32$ in accordance with the structure and the value of the PAPR (Peak-to-Average Power Ratio) of Walsh–Hadamard spectrum resulting in $40$ different spectral sets was performed. The maximal achievable cardinality of $\mathrm{C}$-codes with a predetermined value of PAPR was calculated. Taking into account the interconnection between PAPR value of the Walsh–Hadamard spectrum and nonlinearity distance of binary sequence of length $N = 32$, the cardinalities of classes of sequences with a determined value of nonlinearity distance were found.
Keywords: Walsh–Hadamard transform, nonlinearity distance.
Mots-clés : PAPR
@article{PFMT_2017_2_a15,
     author = {A. V. Sokolov and I. V. Tsevukh},
     title = {On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of {PAPR} of {Walsh--Hadamard} spectrum},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {91--95},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/}
}
TY  - JOUR
AU  - A. V. Sokolov
AU  - I. V. Tsevukh
TI  - On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 91
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
LA  - ru
ID  - PFMT_2017_2_a15
ER  - 
%0 Journal Article
%A A. V. Sokolov
%A I. V. Tsevukh
%T On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 91-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
%G ru
%F PFMT_2017_2_a15
A. V. Sokolov; I. V. Tsevukh. On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/

[1] M.G. Bakulin, V.B. Kreindelin, A.M. Shloma, A.P. Shumov, Tekhnologiya OFDM, Goryachaya liniya-Telekom, M., 2016, 352 pp.

[2] M.I. Mazurkov, Sistemy shirokopolosnoi radiosvyazi, Nauka i Tekhnika, Odessa, 2010, 340 pp.

[3] K.G. Paterson, “Sequences For OFDM and Multi-code CDMA: two problems in algebraic coding theory”, Sequences and their applications, Second Int. Conference Seta 2001 (Bergen, Norway, May 13–17, 2001), Springer, Berlin, 2002, 46–71 | DOI | MR | Zbl

[4] N.N. Tokareva, “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1(3), 15–37

[5] A.V. Sokolov, “Konstruktivnyi metod sinteza posledovatelnostei dliny $N = 20$ s optimalnym spektrom Uolsha–Adamara”, Nauchnye trudy ONAS im. A.S. Popova, 2015, no. 2, 118–126

[6] A.V. Sokolov, “Regular synthesis method of the sequences of length $N = 24$ with optimal PAPR of Walsh–Hadamard spectrum”, Far East Journal of Electronics and Communications, 16:2 (2016), 459–469 | DOI

[7] A.V. Sokolov, O.O. Garkusha, “Neskinchenni simeistva poslidovnostei Peli z optimalnim pik-faktorom spektra Uolsha–Adamara”, Naukovi pratsi ONAZ im. O.S. Popova, 2016, no. 2, 163–169

[8] M.I. Mazurkov, A.V. Sokolov, “Rekurrentnye metody sinteza posledovatelnostei s optimalnym pik-faktorom spektra Uolsha–Adamara”, Informatika i matematicheskie metody v modelirovanii, 5:4 (2015), 203–209

[9] A.G. Rostovtsev, Kriptografiya i zaschita informatsii, Mir i Semya, SPb., 2002

[10] A.V. Sokolov, Novye metody sinteza nelineinykh preobrazovanii sovremennykh shifrov, Lap Lambert Academic Publishing, Germany, 2015, 100 pp.