Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_2_a15, author = {A. V. Sokolov and I. V. Tsevukh}, title = {On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of {PAPR} of {Walsh--Hadamard} spectrum}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {91--95}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/} }
TY - JOUR AU - A. V. Sokolov AU - I. V. Tsevukh TI - On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 91 EP - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/ LA - ru ID - PFMT_2017_2_a15 ER -
%0 Journal Article %A A. V. Sokolov %A I. V. Tsevukh %T On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum %J Problemy fiziki, matematiki i tehniki %D 2017 %P 91-95 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/ %G ru %F PFMT_2017_2_a15
A. V. Sokolov; I. V. Tsevukh. On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
[1] M.G. Bakulin, V.B. Kreindelin, A.M. Shloma, A.P. Shumov, Tekhnologiya OFDM, Goryachaya liniya-Telekom, M., 2016, 352 pp.
[2] M.I. Mazurkov, Sistemy shirokopolosnoi radiosvyazi, Nauka i Tekhnika, Odessa, 2010, 340 pp.
[3] K.G. Paterson, “Sequences For OFDM and Multi-code CDMA: two problems in algebraic coding theory”, Sequences and their applications, Second Int. Conference Seta 2001 (Bergen, Norway, May 13–17, 2001), Springer, Berlin, 2002, 46–71 | DOI | MR | Zbl
[4] N.N. Tokareva, “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1(3), 15–37
[5] A.V. Sokolov, “Konstruktivnyi metod sinteza posledovatelnostei dliny $N = 20$ s optimalnym spektrom Uolsha–Adamara”, Nauchnye trudy ONAS im. A.S. Popova, 2015, no. 2, 118–126
[6] A.V. Sokolov, “Regular synthesis method of the sequences of length $N = 24$ with optimal PAPR of Walsh–Hadamard spectrum”, Far East Journal of Electronics and Communications, 16:2 (2016), 459–469 | DOI
[7] A.V. Sokolov, O.O. Garkusha, “Neskinchenni simeistva poslidovnostei Peli z optimalnim pik-faktorom spektra Uolsha–Adamara”, Naukovi pratsi ONAZ im. O.S. Popova, 2016, no. 2, 163–169
[8] M.I. Mazurkov, A.V. Sokolov, “Rekurrentnye metody sinteza posledovatelnostei s optimalnym pik-faktorom spektra Uolsha–Adamara”, Informatika i matematicheskie metody v modelirovanii, 5:4 (2015), 203–209
[9] A.G. Rostovtsev, Kriptografiya i zaschita informatsii, Mir i Semya, SPb., 2002
[10] A.V. Sokolov, Novye metody sinteza nelineinykh preobrazovanii sovremennykh shifrov, Lap Lambert Academic Publishing, Germany, 2015, 100 pp.