On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral classification of sequences of length $N = 32$ in accordance with the structure and the value of the PAPR (Peak-to-Average Power Ratio) of Walsh–Hadamard spectrum resulting in $40$ different spectral sets was performed. The maximal achievable cardinality of $\mathrm{C}$-codes with a predetermined value of PAPR was calculated. Taking into account the interconnection between PAPR value of the Walsh–Hadamard spectrum and nonlinearity distance of binary sequence of length $N = 32$, the cardinalities of classes of sequences with a determined value of nonlinearity distance were found.
Keywords: Walsh–Hadamard transform, nonlinearity distance.
Mots-clés : PAPR
@article{PFMT_2017_2_a15,
     author = {A. V. Sokolov and I. V. Tsevukh},
     title = {On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of {PAPR} of {Walsh--Hadamard} spectrum},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {91--95},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/}
}
TY  - JOUR
AU  - A. V. Sokolov
AU  - I. V. Tsevukh
TI  - On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 91
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
LA  - ru
ID  - PFMT_2017_2_a15
ER  - 
%0 Journal Article
%A A. V. Sokolov
%A I. V. Tsevukh
%T On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 91-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
%G ru
%F PFMT_2017_2_a15
A. V. Sokolov; I. V. Tsevukh. On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh--Hadamard spectrum. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/