Mots-clés : PAPR
@article{PFMT_2017_2_a15,
author = {A. V. Sokolov and I. V. Tsevukh},
title = {On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of {PAPR} of {Walsh{\textendash}Hadamard} spectrum},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {91--95},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/}
}
TY - JOUR
AU - A. V. Sokolov
AU - I. V. Tsevukh
TI - On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh–Hadamard spectrum
JO - Problemy fiziki, matematiki i tehniki
PY - 2017
SP - 91
EP - 95
IS - 2
UR - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
LA - ru
ID - PFMT_2017_2_a15
ER -
%0 Journal Article
%A A. V. Sokolov
%A I. V. Tsevukh
%T On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh–Hadamard spectrum
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 91-95
%N 2
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
%G ru
%F PFMT_2017_2_a15
A. V. Sokolov; I. V. Tsevukh. On the existence of binary $\mathrm{C}$-codes of length $N = 32$ with a predetermined value of PAPR of Walsh–Hadamard spectrum. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 91-95. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a15/
[1] M.G. Bakulin, V.B. Kreindelin, A.M. Shloma, A.P. Shumov, Tekhnologiya OFDM, Goryachaya liniya-Telekom, M., 2016, 352 pp.
[2] M.I. Mazurkov, Sistemy shirokopolosnoi radiosvyazi, Nauka i Tekhnika, Odessa, 2010, 340 pp.
[3] K.G. Paterson, “Sequences For OFDM and Multi-code CDMA: two problems in algebraic coding theory”, Sequences and their applications, Second Int. Conference Seta 2001 (Bergen, Norway, May 13–17, 2001), Springer, Berlin, 2002, 46–71 | DOI | MR | Zbl
[4] N.N. Tokareva, “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1(3), 15–37
[5] A.V. Sokolov, “Konstruktivnyi metod sinteza posledovatelnostei dliny $N = 20$ s optimalnym spektrom Uolsha–Adamara”, Nauchnye trudy ONAS im. A.S. Popova, 2015, no. 2, 118–126
[6] A.V. Sokolov, “Regular synthesis method of the sequences of length $N = 24$ with optimal PAPR of Walsh–Hadamard spectrum”, Far East Journal of Electronics and Communications, 16:2 (2016), 459–469 | DOI
[7] A.V. Sokolov, O.O. Garkusha, “Neskinchenni simeistva poslidovnostei Peli z optimalnim pik-faktorom spektra Uolsha–Adamara”, Naukovi pratsi ONAZ im. O.S. Popova, 2016, no. 2, 163–169
[8] M.I. Mazurkov, A.V. Sokolov, “Rekurrentnye metody sinteza posledovatelnostei s optimalnym pik-faktorom spektra Uolsha–Adamara”, Informatika i matematicheskie metody v modelirovanii, 5:4 (2015), 203–209
[9] A.G. Rostovtsev, Kriptografiya i zaschita informatsii, Mir i Semya, SPb., 2002
[10] A.V. Sokolov, Novye metody sinteza nelineinykh preobrazovanii sovremennykh shifrov, Lap Lambert Academic Publishing, Germany, 2015, 100 pp.