Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_1_a11, author = {M. V. Sidortsov and N. A. Starovoitova and A. P. Starovoitov}, title = {Asymptotics of the type {II} {Hermite--Pad\'e} approximation of exponential functions with complex multipliers in the exponent}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {73--77}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a11/} }
TY - JOUR AU - M. V. Sidortsov AU - N. A. Starovoitova AU - A. P. Starovoitov TI - Asymptotics of the type II Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 73 EP - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_1_a11/ LA - ru ID - PFMT_2017_1_a11 ER -
%0 Journal Article %A M. V. Sidortsov %A N. A. Starovoitova %A A. P. Starovoitov %T Asymptotics of the type II Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent %J Problemy fiziki, matematiki i tehniki %D 2017 %P 73-77 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2017_1_a11/ %G ru %F PFMT_2017_1_a11
M. V. Sidortsov; N. A. Starovoitova; A. P. Starovoitov. Asymptotics of the type II Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 73-77. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a11/
[1] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Pade method”, J. of Comput. and Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl
[2] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, How well does the Hermite–Pade approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl
[3] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, Uspekhi matem. nauk, 57:3 (2002), 99–134 | DOI | Zbl
[4] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | Zbl
[5] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, Uspekhi matem. nauk, 70:5(425) (2015), 121–174 | DOI | Zbl
[6] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl
[7] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[8] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | Zbl
[9] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | Zbl
[10] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sbornik, 185:6 (1994), 79–100
[11] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[12] G. V. Chudnovsky, Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$, Lecture Notes in Math., Springer-Verlag, New York–Berlin, 1982 | DOI | MR
[13] W. Van Assche, “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., 236, Amer. Math. Soc., 1999, 325–342 | DOI | Zbl
[14] K. Mahler, “Applications of some formulas by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 200–227 | DOI | MR | Zbl
[15] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007
[16] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Pade polynomials”, Progress in Approximation Theory, eds. A. A. Gonchar, E. B. Saff, Springer-Verlag, New York–Berlin, 1992 | MR | Zbl
[17] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6(402) (2011), 37–122 | DOI | Zbl
[18] A. I. Aptekarev, A. E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, Uspekhi matem. nauk, 66:6(402) (2011), 123–190 | DOI | Zbl
[19] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 14 (2002), 193–220 | MR
[20] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[21] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii; т. 2, Обобщения и приложения, Мир, М., 1986 | MR
[22] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293
[23] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 1, 68–74
[24] O. Perron, Die Lehre von den Kettenbruchen, Teubner, Leipzig–Berlin, 1929 | MR | Zbl
[25] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl
[26] A. P. Starovoitov, “Asimptotika approksimatsii Ermita–Pade sistemy eksponent”, Doklady Natsionalnoi akademii nauk Belarusi, 57:2 (2013), 5–10 | Zbl
[27] A. P. Starovoitov, “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Doklady Natsionalnoi akademii nauk Belarusi, 57:1 (2013), 5–10 | Zbl
[28] A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 81–87
[29] A. P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Izvestiya vuzov. Matematika, 2014, no. 9, 59–68
[30] A. P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:1(2) (2013), 88–91 | Zbl
[31] A. V. Astafeva, A. P. Starovoitov, “Asimptoticheskie svoistva mnogochlenov Ermita”, Doklady Natsionalnoi akademii nauk Belarusi, 59:3 (2015), 5–11
[32] A. V. Astafeva, A. P. Starovoitov, “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Matem. sbornik, 207:6 (2016), 3–26 | DOI
[33] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl
[34] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR