Finite groups with given generalized maximal subgroups (Review). I. Finite group with generalized normal $n$-maximal subgroup
Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. A chain of subgroups $H_n$ of $G$ such that $H_i$ is a maximal subgroup of $H_{i-1}$ for every $i=1,\dots,n$ is called a maximal chain of length $n$. A subgroup $H$ of $G$ is said to be an $n$-maximal subgroup of $G$ if $H$ is the latest member of some maximal chain of $G$ of length $n$. In this review, we give the analisis of the most famous papers in which finite groups with generalized normal $n$-maximal subgroups are developed.
Keywords: finite group, maximal subgroup, $n$-maximal subgroup, normal subgroup, subnormal subgroup, $K$-$\mathfrak{F}$-subnormal subgroup, permutable subgroup.
Mots-clés : maximal chain
@article{PFMT_2016_4_a8,
     author = {V. A. Kovaleva},
     title = {Finite groups with given generalized maximal subgroups {(Review).} {I.} {Finite} group with generalized normal $n$-maximal subgroup},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--58},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_4_a8/}
}
TY  - JOUR
AU  - V. A. Kovaleva
TI  - Finite groups with given generalized maximal subgroups (Review). I. Finite group with generalized normal $n$-maximal subgroup
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 48
EP  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_4_a8/
LA  - ru
ID  - PFMT_2016_4_a8
ER  - 
%0 Journal Article
%A V. A. Kovaleva
%T Finite groups with given generalized maximal subgroups (Review). I. Finite group with generalized normal $n$-maximal subgroup
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 48-58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_4_a8/
%G ru
%F PFMT_2016_4_a8
V. A. Kovaleva. Finite groups with given generalized maximal subgroups (Review). I. Finite group with generalized normal $n$-maximal subgroup. Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 48-58. http://geodesic.mathdoc.fr/item/PFMT_2016_4_a8/

[1] B. Huppert, “Normalteiler und maximal Untergruppen endlicher gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[2] W. E. Deskins, “On maximal subgroups”, Proc. Sympos. Pure Math., 1, 1959, 100–104 | DOI | MR | Zbl

[3] W. E. Deskins, “A note on the index complex of maximal subgroups”, Arch. Math., 54 (1990), 236–240 | DOI | MR | Zbl

[4] Z. Janko, “Finite groups with a nilpotent maximal subgroup”, J. Austral. Math. Soc., 4 (1964), 449–451 | DOI | MR | Zbl

[5] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sbornik, 31 (1924), 366–372

[6] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[7] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978

[9] Yu. V. Lutsenko, A. N. Skiba, “Stroenie konechnykh grupp s $S$-kvazinormalnymi tretimi maksimalnymi podgruppami”, Ukr. matem. zh., 61:12 (2009), 1630–1639 | Zbl

[10] Z. Janko, “Finite groups with invariant fourth maximal subgroups”, Math. Z., 82 (1963), 82–89 | DOI | MR | Zbl

[11] Ya. G. Berkovich, “O suschestvovanii podgrupp u konechnoi nerazreshimoi gruppy”, Izv. AN SSSR, 156:6 (1964), 1255–1257 | Zbl

[12] M. Asaad, “Finite groups some whose $n$-maximal subgroups are normal”, Acta Math. Hung., 54:1–2 (1989), 9–27 | DOI | MR | Zbl

[13] Yu. V. Lutsenko, A. N. Skiba, “Konechnye gruppy s subnormalnymi vtorymi ili tretimi maksimalnymi podgruppami”, Matem. zametki, 91:5 (2012), 680–688 | DOI | Zbl

[14] P. Flavell, “Overgroups of second maximal subgroups”, Arch. Math., 64 (1995), 277–282 | DOI | MR | Zbl

[15] Ya. G. Berkovich, “Podgruppovaya kharakterizatsiya nekotorykh konechnykh grupp”, Dokl. AN BSSR, 169:3 (1996), 499–502

[16] A. Mann, “Finite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 132 (1968), 395–409 | MR | Zbl

[17] L. Ya. Polyakov, “Maksimalnye i normalnye ryady konechnykh grupp”, Dokl. AN SSSR, 167:2 (1966), 294–297 | Zbl

[18] V. A. Vedernikov, “O konechnykh gruppakh s perestanovochnymi podgruppami”, Dokl. AN BSSR, 2:12 (1967), 1057–1059

[19] O. H. Kegel, “Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten”, Arch. Math., 30:3 (1978), 225–228 | DOI | MR | Zbl

[20] V. A. Kovaleva, A. N. Skiba, “Konechnye razreshimye gruppy, u kotorykh vse $n$-maksimalnye podgruppy $\mathfrak{U}$-subnormalny”, Sibir. matem. zh., 54:1 (2013), 86–97 | Zbl

[21] V. A. Kovaleva, A. N. Skiba, “Finite soluble groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17 (2014), 273–290 | DOI | MR | Zbl

[22] V. A. Kovaleva, S. Ii, “Finite groups with all $n$-maximal ($n=2, 3$) subgroups $K$-$\mathfrak{U}$-subnormal”, Problemy fiziki, matematiki i tekhniki, 2014, no. 2(19), 59–64

[23] V. A. Kovaleva, X. Yi, “Finite biprimary groups with all $3$-maximal subgroups $\mathfrak{U}$-subnormal”, Acta Math. Hung., 146:1 (2015), 47–55 | DOI | MR

[24] V. A. Kovaleva, “Konechnye gruppy s zadannymi sistemami $K$-$\mathfrak{U}$-subnormalnykh podgrupp”, Ukr. matem. zh., 68:1 (2016), 52–63

[25] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O $K$-$\mathbb{P}$-subnormalnykh pogruppakh konechnykh grupp”, Matem. zametki, 95:4 (2014), 517–528 | DOI | Zbl

[26] V. A. Kovaleva, “Finite groups with all 2-maximal subgroups $K$-$\mathbb{P}$-subnormal”, Math. Sci. Res. J., 17:6 (2013), 150–155 | Zbl

[27] V. A. Kovaleva, “Finite groups with generalized $\mathbb{P}$-subnormal second maximal subgroups”, Asian-European J. Math., 7:3 (2014), 1450047-1–1450047-8 | DOI | MR

[28] R. K. Agrawal, “The influence on a finite group of its permutable subgroups”, Canad. Math. Bull., 17:2 (1974), 159–165 | DOI | MR | Zbl

[29] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Appl., 15:4 (2015), 21–36 | MR

[30] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[31] A. N. Skiba, “On $\sigma$-properties of finite groups I”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 89–96

[32] A. N. Skiba, “On $\sigma$-properties of finite groups II”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3(24), 70–83

[33] A. N. Skiba, “On $\sigma$-properties of finite groups III”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 52–62

[34] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Comm. in Math. and Stat., 4:3 (2016), 281–309 | DOI | MR

[35] V. N. Knyagina, V. S. Monakhov, “O perestanovochnosti $n$-maksimalnykh podgrupp s podgruppami Shmidta”, Tr. IMM UrO RAN, 18, no. 3, 2012, 125–130 | Zbl

[36] Ya. G. Berkovich, “O suschestvovanii podgrupp u konechnoi nerazreshimoi gruppy II”, Izv. AN SSSR, 29 (1965), 527–552 | Zbl

[37] W. Guo, A. N. Skiba, “Finite groups with given $s$-embedded and $n$-embedded subgroups”, J. Algebra, 321 (2009), 2843–2860 | DOI | MR | Zbl

[38] Y. Li, Y. Wang, H. Wei, “On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded”, Acta Math. Hung., 108:4 (2005), 283–298 | DOI | MR | Zbl

[39] E. M. Palchik, “O gruppakh, vse $i$-maksimalnye podgruppy kotorykh perestanovochny s silovskoi podgruppoi. I”, Izv. AN BSSR, 1968, no. 1, 45–48

[40] E. M. Palchik, N. P. Kontorovich, “O gruppakh, vse $i$-maksimalnye podgruppy kotorykh perestanovochny s silovskoi podgruppoi. II”, Izv. AN BSSR, 1969, no. 3, 51–57

[41] L. Ya. Polyakov, “Konechnye gruppy s perestanovochnymi podgruppami”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1966, 75–88 | Zbl

[42] E. V. Legchekova, A. N. Skiba, “Konechnye gruppy s chastichno perestanovochnymi vtorymi i tretimi maksimalnymi podgruppami”, Dokl. NAN Belarusi, 50:3 (2006), 1012–1017

[43] V. Go, E. V. Legchekova, A. N. Skiba, “Konechnye gruppy, v kotorykh kazhdaya tretya maksimalnaya podgruppa perestanovochna so vsemi maksimalnymi podgruppami”, Matem. zametki, 86:3 (2009), 350–359 | DOI | Zbl

[44] W. Guo, H. V. Legchekova, A. N. Skiba, “The structure of finite non-nilpotent groups in which every 2-maximal subgroup permutes with all 3-maximal subgroups”, Comm. in Algebra, 37 (2009), 2446–2456 | DOI | MR | Zbl

[45] A. N. Skiba, “Finite groups with given systems of generalized permutable subgroups”, Izv. GGU im. F. Skoriny, 36:3 (2006), 12–31

[46] V. Go, Yu. V. Lutsenko, A. N. Skiba, “O nenilpotentnykh gruppakh, lyubye dve 3-maksimalnye podgruppy kotorykh perestanovochny”, Sibir. matem. zh., 50:6 (2009), 1255–1268 | Zbl

[47] W. Guo, K. P. Shum, A. N. Skiba, “Conditionally Permutable Subgroups and Supersolubility of Finite Groups”, SEAMS Bull. Math., 29:2 (2004), 240–254 | MR

[48] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl

[49] W. Guo, K. P. Shum, A. N. Skiba, “Finite groups with some system of $X_m$-semipermutable subgroups”, Math. Nachr., 283:11 (2010), 1603–1612 | DOI | MR | Zbl

[50] B. Li, A. N. Skiba, “New characterizations of finite supersoluble groups”, Sci. in China, Serias A: Math., 50:1 (2008), 827–841 | MR

[51] W. Guo, A. N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl

[52] R. Schmidt, “Endliche Gruppen mit vielen modularen Untergruppen”, Abhandl. Math. Semin. Univ. Hamburg, 34:1–2 (1969), 115–125 | DOI | MR | Zbl

[53] K. A. Reshko, V. I. Kharlamova, “O $p$-dline proizvolnoi konechnoi gruppy”, Matem. zametki, 14:3 (1973), 419–427

[54] Kh. Ya. Unachev, “Konechnye gruppy, lyubaya $i$-maksimalnaya podgruppa kotorykh nezavisima”, Sibir. matem. zh., 12:4 (1971), 926–930 | Zbl

[55] Kh. Ya. Unachev, “O konechnykh gruppakh, chetvertye maksimalnye podgruppy kotorykh nezavisimy”, Algebra i teoriya chisel, 1977, no. 2, 127–138

[56] Sh. Li, “Finite non-nilpotent groups all of whose second maximal subgroups are $TI$-groups”, Math. Proc. Royal Irish Academy, 100A:1 (2000), 65–71 | MR

[57] D'Aniello Alma, “Groups in which $n$-maximal subgroups are dualpronormal”, Rend. Semin. Mat. Univ. Padova, 84 (1990), 83–90 | MR | Zbl

[58] A. Ballester-Bolinches, L. M. Ezquerro, A. N. Skiba, “On second maximal subgroups of Sylow subgroups of finite groups”, J. Pure and Appl. Algebra, 215:4 (2011), 705–714 | DOI | MR | Zbl