Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2016_4_a11, author = {E. N. Myslovets}, title = {$J$-construction of composition formations and products of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {68--73}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2016_4_a11/} }
E. N. Myslovets. $J$-construction of composition formations and products of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 68-73. http://geodesic.mathdoc.fr/item/PFMT_2016_4_a11/
[1] A. F. Vasil'ev, T. I. Vasil'eva, E. N. Myslovets, “On finite groups with a given normal structure”, Siberian Electronic Mathematical Reports, 13 (2016), 897–910 | MR
[2] V. A. Vedernikov, “On some classes of finite groups”, Dokl. Akad. Nauk BSSR, 32:10 (1988), 872–875 | MR | Zbl
[3] W. Guo, A. N. Skiba, “On finite quazi-$\mathfrak{F}$-groups”, Communication in Algebra, 37 (2009), 470–481 | DOI | MR | Zbl
[4] W. Guo, A. N. Skiba, “On some classes of finite quazi-$\mathfrak{F}$-groups”, Journal of Group Theory, 12 (2009), 407–417 | DOI | MR | Zbl
[5] E. P. Vdovin, D. O. Revin, L. A. Shemetkov, “Formations of finite $C_{\pi}$-groups”, St. Petersburg Math. J., 24 (2013), 29–37 | DOI | MR | Zbl
[6] A. F. Vasil'ev, T. I. Vasil'eva, “On finite groups whose principal factors are simple groups”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:11 (1997), 8–12 | MR | Zbl
[7] D. J. S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–149 | DOI | MR
[8] A. Ballester-Bolinches, J. Cossey, “Totally permutable products of finite groups satisfying SC and PST”, Monatsh. Math., 145 (2005), 89–94 | DOI | MR | Zbl
[9] J. C. Beidleman, P. Hauck, H. Heineken, “Totally permutable products of certain classes of finite groups”, J. Algebra, 276 (2004), 826–835 | DOI | MR | Zbl
[10] A. Ballester-Bolinches, J. Cossey, M. C. Pedraza-Aguilera, “On mutually permutable products of finite groups”, J. Algebra, 294 (2005), 127–135 | DOI | MR | Zbl
[11] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1:2 (1957), 115–187 | MR | Zbl
[12] H. G. Bray et al., Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp. | MR | Zbl
[13] V. S. Monakhov, I. K. Chirik, “On the $p$-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 256–267 | MR
[14] E. N. Myslovets, “On products of normal generalized supersoluble subgroups of finite groups”, Izv. of F. Scorina Gomel State University, 6:75 (2012), 163–167
[15] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, 2010, 334 pp. | MR | Zbl
[16] E. N. Myslovets, “On mutually permutable products of generalized supersoluble subgroups of finite groups”, Asian-European Journal of Matematics, 9:2 (2016), 1650054-1–1650054-10 | DOI | MR
[17] J. C. Beidleman, H. Heineken, “Mutually permutable subgroups and group classes”, Arch. Math., 85 (2005), 12–30 | DOI | MR
[18] J. C. Beidleman, H. Heineken, “Group classes and mutually permutable products”, Journal of Algebra, 297 (2006), 409–416 | DOI | MR | Zbl
[19] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978, 272 pp. | MR | Zbl
[20] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR
[21] A. N. Skiba, L. A. Shemetkov, “Multiply $\mathfrak{L}$-composition formations of finite groups”, Ukrainsk. Math. Zh., 52:6 (2000), 783–797 (In Russian) | MR | Zbl