On one generalization of finite $\sigma$-nilpotent groups
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Let $\sigma=\{\sigma_i\mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $n$ an integer. Let $\sigma(n)=\{\sigma_i\mid\sigma_i\cap\pi(n)\ne\varnothing\}$, $\sigma(G)=\sigma(|G|)$. A set $l\in\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\sigma$-set of $G$ if every member of $\mathcal{H}\setminus\{l\}$ is a Hall $\sigma_i$-subgroup of $G$ for some $\sigma_i$ and $\mathcal{H}$ contains exact one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\sigma(G)$. If $G$ possesses a complete Hall $\sigma$-set, then it is said to be $\sigma$-full. A subgroup $A$ of $G$ is called: (i) a $\sigma$-Hall subgroup of $G$ if $\sigma(A)\cap\sigma(|G:A|)=\varnothing$; (ii) $H_\sigma$-normally embedded in $G$ if $A$ is a $\sigma$-Hall subgroup of some normal subgroup of $G$. In this paper, we study $\sigma$-full groups $G$ whose all subgroups are $H_\sigma$-normally embedded in $G$.
Keywords: finite group, $\sigma$-Hall subgroup, $H_\sigma$-normally embedded subgroup, $H\sigma E$-group.
@article{PFMT_2016_3_a9,
     author = {D. A. Sinitsa and V. N. Rizhik},
     title = {On one generalization of finite $\sigma$-nilpotent groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--65},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/}
}
TY  - JOUR
AU  - D. A. Sinitsa
AU  - V. N. Rizhik
TI  - On one generalization of finite $\sigma$-nilpotent groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 61
EP  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/
LA  - ru
ID  - PFMT_2016_3_a9
ER  - 
%0 Journal Article
%A D. A. Sinitsa
%A V. N. Rizhik
%T On one generalization of finite $\sigma$-nilpotent groups
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 61-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/
%G ru
%F PFMT_2016_3_a9
D. A. Sinitsa; V. N. Rizhik. On one generalization of finite $\sigma$-nilpotent groups. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/

[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 2016 | DOI | MR

[3] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Appl., 15:4 (2015), 21–36 | MR

[4] S. Li, J. He, G. Nong, L. Zhou, “On Hall normally embedded subgroups of finite groups”, Comm. Algebra, 37 (2009), 3360–3367 | DOI | MR | Zbl

[5] W. Guo, A. N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl

[6] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[7] S. Li, J. Liu, “On Hall subnormally embedded and generalized nilpotent groups”, J. Algebra, 388 (2013), 1–9 | DOI | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992

[9] W. Guo, K. P. Shum, A. N. Skiba, “X-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl

[10] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[11] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, New York–Dordrecht–Boston–London–Beijing, 2000 | MR | Zbl