@article{PFMT_2016_3_a9,
author = {D. A. Sinitsa and V. N. Rizhik},
title = {On one generalization of finite $\sigma$-nilpotent groups},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {61--65},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/}
}
D. A. Sinitsa; V. N. Rizhik. On one generalization of finite $\sigma$-nilpotent groups. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a9/
[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[2] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 2016 | DOI | MR
[3] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Appl., 15:4 (2015), 21–36 | MR
[4] S. Li, J. He, G. Nong, L. Zhou, “On Hall normally embedded subgroups of finite groups”, Comm. Algebra, 37 (2009), 3360–3367 | DOI | MR | Zbl
[5] W. Guo, A. N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory, 18 (2015), 191–200 | DOI | MR | Zbl
[6] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[7] S. Li, J. Liu, “On Hall subnormally embedded and generalized nilpotent groups”, J. Algebra, 388 (2013), 1–9 | DOI | MR | Zbl
[8] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992
[9] W. Guo, K. P. Shum, A. N. Skiba, “X-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl
[10] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR
[11] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, New York–Dordrecht–Boston–London–Beijing, 2000 | MR | Zbl