Poisson theorem of building autonomous integrals for autonomous systems of total differential equations
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The autonomous system of total differential equations and corresponding to it Hamiltonian differential system are considered. The analytical relations (the existence of first integrals and partial solutions, fulfillment of conditions of completely solvability) between these differential systems are established. Using these relations, the Poisson theorem of building autonomous first integrals for autonomous system of total differential equations is proved and statements of the existence of additional autonomous first integrals for this system are obtained.
Keywords: system of total differential equations, first integral
Mots-clés : Poisson theorem.
@article{PFMT_2016_3_a7,
     author = {A. F. Pranevich},
     title = {Poisson theorem of building autonomous integrals for autonomous systems of total differential equations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {52--57},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a7/}
}
TY  - JOUR
AU  - A. F. Pranevich
TI  - Poisson theorem of building autonomous integrals for autonomous systems of total differential equations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 52
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a7/
LA  - ru
ID  - PFMT_2016_3_a7
ER  - 
%0 Journal Article
%A A. F. Pranevich
%T Poisson theorem of building autonomous integrals for autonomous systems of total differential equations
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 52-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a7/
%G ru
%F PFMT_2016_3_a7
A. F. Pranevich. Poisson theorem of building autonomous integrals for autonomous systems of total differential equations. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 52-57. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a7/

[1] K. Yakobi, Lektsii po dinamike, Glavnaya redaktsiya obschetekhnicheskoi literatury, L.–M., 1936, 272 pp.

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp.

[3] F. R. Gantmakher, Lektsii po analiticheskoi mekhanike, Nauka, M., 1966, 300 pp.

[4] A. Buhl, “Sur les formes linéares aux dérivées partielles d'une intégrale d'une systémes d'equations différentielles simultanees qui sont aussi des intégrales de ce systéme”, Comptes rendus, 132 (1901), 313–316

[5] P. Appell, “Sur le théoreme de Poisson et un théoreme de Buhl”, Comptes rendus, 132 (1901), 317–319

[6] M. F. Shulgin, O nekotorykh differentsialnykh uravneniyakh analiticheskoi dinamiki i ikh integrirovanii, SAGU, Tashkent, 1958, 184 pp.

[7] V. V. Dobronravov, “Analiticheskaya dinamika v negolonomnykh koordinatakh”, Mekhanika. T. 2, Uchenye zapiski MGU, 122, 1948, 77–182 | MR

[8] N. G. Chetaev, “Ob uravneniyakh Puankare”, DAN SSSR. Ser. A, 1928, no. 7, 103–104 | Zbl

[9] N. G. Chetaev, “Ob uravneniyakh Puankare”, Prikladnaya matematika i mekhanika, 5 (1941), 259–261

[10] P. Appel, Teoreticheskaya mekhanika, v 2 t., v. 2, Dinamika sistemy. Analiticheskaya mekhanika, Gos. iz-vo fiz.-mat. lit., M., 1960, 486 pp.

[11] V. N. Gorbuzov, Integraly differentsialnykh sistem, GrGU, Grodno, 2006, 447 pp.

[12] I. V. Gaishun, Vpolne razreshimye mnogomernye differentsialnye uravneniya, Editorial URSS, M., 2004, 272 pp.

[13] V. V. Amelkin, Avtonomnye i lineinye mnogomernye differentsialnye uravneniya, Editorial URSS, M., 2003, 144 pp.

[14] V. V. Kozlov, Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurtskogo un-ta, Izhevsk, 1995, 432 pp.

[15] A. Goriely, Integrability and nonintegrability of dynamical systems, Advanced series on nonlinear dynamics, 19, World Scientific, 2001, 436 pp. | DOI | MR | Zbl

[16] A. F. Pronevich, R-differentsiruemye integraly sistem v polnykh differentsialakh, LAP LAMBERT Academic Publishing, Saarbruchen, 2011, 104 pp.

[17] I. S. Arzhanykh, “Ob integrirovanii kanonicheskoi sistemy uravnenii v tochnykh differentsialakh”, Uspekhi matem. nauk, VIII:3(55) (1953), 99–104