Finite factorised groups whose factors are subnormal supersolvable subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 40-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

New criteria of supersolvability for a finite group which is factorised as a product of supersoluble subgroups are obtained. Some applications to the factorization by $F(G)$-subnormal subgroups are presented.
Keywords: finite group, derived subgroup, subnormal subgroup, factorised group.
Mots-clés : supersolvable group
@article{PFMT_2016_3_a5,
     author = {V. S. Monakhov and I. K. Chirik},
     title = {Finite factorised groups whose factors are subnormal supersolvable subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--46},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a5/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. K. Chirik
TI  - Finite factorised groups whose factors are subnormal supersolvable subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 40
EP  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a5/
LA  - ru
ID  - PFMT_2016_3_a5
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. K. Chirik
%T Finite factorised groups whose factors are subnormal supersolvable subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 40-46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a5/
%G ru
%F PFMT_2016_3_a5
V. S. Monakhov; I. K. Chirik. Finite factorised groups whose factors are subnormal supersolvable subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 40-46. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a5/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | MR

[3] B. Huppert, “Monomialle darstellung endlicher gruppen”, Nagoya Math. J., 3 (1953), 93–94 | DOI | MR

[4] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl

[5] D. Freisen, “Products of normal supersolvable subgroups”, Proc. Amer. Math. Soc., 30:1 (1971), 46–48 | DOI | MR

[6] A. F. Vasilev, T. I. Vasileva, “O konechnykh gruppakh, u kotorykh glavnye faktory yavlyayutsya prostymi gruppami”, Izv. vuzov. Matem., 1997, no. 11(426), 10–14

[7] V. I. Murashko, A. F. Vasilev, “O proizvedeniyakh chastichno subnormalnykh podgrupp konechnykh grupp”, Vesnik Vitsebskaga dzyarzhaŭnaga ŭniversiteta, 2012, no. 4(70), 24–27

[8] H. G. Bray et al., Between Nilpotent and Soluble, ed. M. Weinstein, Polygonal Publishing House, Passaic, 1982, 240 pp. | MR

[9] V. S. Monakhov, I. K. Chirik, “O $p$-sverkhrazreshimosti konechnoi faktorizuemoi gruppy s normalnymi somnozhitelyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 21, no. 3, 2015, 256–267 | MR

[10] V. A. Vedernikov, “O $\pi$-svoistvakh konechnykh grupp”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Sb. nauch. st., Nauka i tekhnika, Minsk, 1986, 13–19 | MR

[11] D. V. Gritsuk, V. S. Monakhov, “About maximal subgroup of a finite solvable group”, Eurasian Mathematical Journal, 3:2 (2012), 129–134 | MR | Zbl

[12] W. Gaschütz, “Über die $\Phi$-Untergruppe endlicher Gruppen”, Math. Z., 58 (1953), 160–170 | DOI | MR | Zbl