Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2016_3_a1, author = {E. M. Ovsiyuk and A. N. Red'ko and V. V. Kisel and V. M. Red'kov}, title = {Isotopic doublet of the {Dirac} particles in presence of the {non-Abelian} monopole: the {Pauli} approximation}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {13--22}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/} }
TY - JOUR AU - E. M. Ovsiyuk AU - A. N. Red'ko AU - V. V. Kisel AU - V. M. Red'kov TI - Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation JO - Problemy fiziki, matematiki i tehniki PY - 2016 SP - 13 EP - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/ LA - ru ID - PFMT_2016_3_a1 ER -
%0 Journal Article %A E. M. Ovsiyuk %A A. N. Red'ko %A V. V. Kisel %A V. M. Red'kov %T Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation %J Problemy fiziki, matematiki i tehniki %D 2016 %P 13-22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/ %G ru %F PFMT_2016_3_a1
E. M. Ovsiyuk; A. N. Red'ko; V. V. Kisel; V. M. Red'kov. Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 13-22. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/
[1] G. 't Hooft, “Monopoles in unified gauge theories”, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI | MR
[2] A. M. Polyakov, “Spektr chastits v kvantovoi teorii polya”, Pisma v ZhETF, 20:6 (1974), 430–433
[3] B. Julia, A. Zee, “Poles with both magnetic and electric charges in non-Abelian gauge theory”, Phys. Rev. D, 11:8 (1975), 2227–2232 | DOI
[4] F. A. Bais, R. J. Russel, “Magnetic-monopole solution of non-Abelian gauge theory in curved space-time”, Phys. Rev. D, 11:10 (1975), 2692–2695 | DOI | MR
[5] J. H. Swank, L. J. Swank, Tekin Dereli, “Fermions in Yang–Mills potentials”, Phys. Rev. D, 12:4 (1975), 1096–1102 | DOI
[6] R. Jackiw, C. Rebbi, “Solitons with fermion number 1/2”, Phys. Rev. D, 13:12 (1976), 3398–3409 | DOI | MR
[7] R. Jackiw, C. Rebbi, “Spin from isospin in a gauge theory”, Phys. Rev. Lett., 36:19 (1976), 1116–1119 | DOI | MR
[8] P. Hasenfratz, G. 't Hooft, “Fermion-boson puzzle in a gauge theory”, Phys. Rev. Lett., 36:19 (1976), 1119–1122 | DOI
[9] E. V. Prokhvatilov, V. A. Franke, “Fermiony v pole monopolya Khufta–Polyakova”, Yader. fizika, 24:4 (1976), 856–860 | MR
[10] V. M. Redkov, Polya chastits v rimanovom prostranstve i gruppa Lorentsa, Belorusskaya nauka, Minsk, 2009, 486 pp.
[11] M. K. Prasad, C. M. Sommerfield, “Exact classical solution of the 't Hooft monopole and Julia–Zee dyon”, Phys. Rev. Lett., 35:12 (1975), 760–762 | DOI
[12] E. B. Bogomolnyi, “Stabilnost klassicheskikh reshenii”, Yader. fizika, 24 (1976), 861–870 | MR
[13] V. M. Redkov, Tetradnyi formalizm, sfericheskaya simmetriya i bazis Shredingera, Belorusskaya nauka, Minsk, 2011, 339 pp.
[14] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975, 439 pp.
[15] G. Beitmen, A. Erdei, Vysshie transtsendentnye funktsii, v 3 t., v. 1, Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973, 294 pp.
[16] V. M. Red'kov, E. M. Ovsiyuk, Quantum mechanics in spaces of constant curvature, Nova Science Publishers, Inc., New York, 2012, 434 pp.