Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the doublet of Dirac particles in presence of external non-Abelian fields, a non-relativistic Pauli equation is constructed. It is detailed for the case of the Bogomolny–Prasad–Sommerfeld monopole potentials. The problem of existence of bound states in the system is studied. Comparison of the behavior of the Dirac particles doublet in three spaces of constant curvature: Euclid, Lobachevsky, and Riemann, is performed, from where it follows that the known nonsingular monopole solution usually used for the case of Minkowski space is the application of a mathematical possibility more naturally related to the Lobachevsky space model. Within that treatment, in all three space models, no bound states for the doublet of fermions in the non-Abelian monopole potential exist.
Mots-clés : doublet of fermions, non-Abelian monopole
Keywords: Pauli approximation, spaces of constant curvature, bound states.
@article{PFMT_2016_3_a1,
     author = {E. M. Ovsiyuk and A. N. Red'ko and V. V. Kisel and V. M. Red'kov},
     title = {Isotopic doublet of the {Dirac} particles in presence of the {non-Abelian} monopole: the {Pauli} approximation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--22},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
AU  - A. N. Red'ko
AU  - V. V. Kisel
AU  - V. M. Red'kov
TI  - Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 13
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/
LA  - ru
ID  - PFMT_2016_3_a1
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%A A. N. Red'ko
%A V. V. Kisel
%A V. M. Red'kov
%T Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 13-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/
%G ru
%F PFMT_2016_3_a1
E. M. Ovsiyuk; A. N. Red'ko; V. V. Kisel; V. M. Red'kov. Isotopic doublet of the Dirac particles in presence of the non-Abelian monopole: the Pauli approximation. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 13-22. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a1/

[1] G. 't Hooft, “Monopoles in unified gauge theories”, Nucl. Phys. B, 79:2 (1974), 276–284 | DOI | MR

[2] A. M. Polyakov, “Spektr chastits v kvantovoi teorii polya”, Pisma v ZhETF, 20:6 (1974), 430–433

[3] B. Julia, A. Zee, “Poles with both magnetic and electric charges in non-Abelian gauge theory”, Phys. Rev. D, 11:8 (1975), 2227–2232 | DOI

[4] F. A. Bais, R. J. Russel, “Magnetic-monopole solution of non-Abelian gauge theory in curved space-time”, Phys. Rev. D, 11:10 (1975), 2692–2695 | DOI | MR

[5] J. H. Swank, L. J. Swank, Tekin Dereli, “Fermions in Yang–Mills potentials”, Phys. Rev. D, 12:4 (1975), 1096–1102 | DOI

[6] R. Jackiw, C. Rebbi, “Solitons with fermion number 1/2”, Phys. Rev. D, 13:12 (1976), 3398–3409 | DOI | MR

[7] R. Jackiw, C. Rebbi, “Spin from isospin in a gauge theory”, Phys. Rev. Lett., 36:19 (1976), 1116–1119 | DOI | MR

[8] P. Hasenfratz, G. 't Hooft, “Fermion-boson puzzle in a gauge theory”, Phys. Rev. Lett., 36:19 (1976), 1119–1122 | DOI

[9] E. V. Prokhvatilov, V. A. Franke, “Fermiony v pole monopolya Khufta–Polyakova”, Yader. fizika, 24:4 (1976), 856–860 | MR

[10] V. M. Redkov, Polya chastits v rimanovom prostranstve i gruppa Lorentsa, Belorusskaya nauka, Minsk, 2009, 486 pp.

[11] M. K. Prasad, C. M. Sommerfield, “Exact classical solution of the 't Hooft monopole and Julia–Zee dyon”, Phys. Rev. Lett., 35:12 (1975), 760–762 | DOI

[12] E. B. Bogomolnyi, “Stabilnost klassicheskikh reshenii”, Yader. fizika, 24 (1976), 861–870 | MR

[13] V. M. Redkov, Tetradnyi formalizm, sfericheskaya simmetriya i bazis Shredingera, Belorusskaya nauka, Minsk, 2011, 339 pp.

[14] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975, 439 pp.

[15] G. Beitmen, A. Erdei, Vysshie transtsendentnye funktsii, v 3 t., v. 1, Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1973, 294 pp.

[16] V. M. Red'kov, E. M. Ovsiyuk, Quantum mechanics in spaces of constant curvature, Nova Science Publishers, Inc., New York, 2012, 434 pp.