Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2016_2_a9, author = {A. P. Starovoitov and G. N. Kazimirov and M. V. Sidorzov}, title = {Asymptotics of {Hermite--Pad\'e} approximation of exponential functions with complex multipliers in the exponent}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {61--67}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a9/} }
TY - JOUR AU - A. P. Starovoitov AU - G. N. Kazimirov AU - M. V. Sidorzov TI - Asymptotics of Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent JO - Problemy fiziki, matematiki i tehniki PY - 2016 SP - 61 EP - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a9/ LA - ru ID - PFMT_2016_2_a9 ER -
%0 Journal Article %A A. P. Starovoitov %A G. N. Kazimirov %A M. V. Sidorzov %T Asymptotics of Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent %J Problemy fiziki, matematiki i tehniki %D 2016 %P 61-67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a9/ %G ru %F PFMT_2016_2_a9
A. P. Starovoitov; G. N. Kazimirov; M. V. Sidorzov. Asymptotics of Hermite--Pad\'e approximation of exponential functions with complex multipliers in the exponent. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 61-67. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a9/
[1] J. P. Boyd, K. Mahler, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Pade method”, J. of Comput. and Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl
[2] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, How well does the Hermite–Pade approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl
[3] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, Uspekhi matem. nauk, 57:3 (2002), 931–958
[4] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl
[5] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[6] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl
[7] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl
[8] K. Mahler, “Approximation der Exponentialfunktion und des Logarithmus. I; II”, J. Reine Angew. Math., 166 (1931), 118–150 | MR
[9] K. Mahler, “Applications of some formulas by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 200–227 | DOI | MR | Zbl
[10] W. Van Assche, Continued fractions: from analytic number theory to constructive approximation (University of Missouri-Columbia, Columbia, MO, USA, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl
[11] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, Lecture Notes in Math., 925, Springer-Verlag, New York–Berlin, 1982, 299–322 | DOI | MR
[12] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 1988
[13] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sbornik, 185:6 (1994), 79–100
[14] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[15] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Math. Pura. Appl. Ser. 2A, 21 (1883), 289–308 | DOI
[16] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293
[17] K. Mahler, “Perfect systems”, Comp. Math., 19 (1968), 95–166 | MR | Zbl
[18] H. Pade, “Memoire sur les developpements en fractions continues de la fonctial exponential”, Ann. École Norm. Sup. Paris, 16:3 (1899), 394–426 | MR
[19] P. B. Borwein, “Quadratic Hermite–Padé approximation to the exponential function”, Const. Approx., 62 (1986), 291–302 | DOI | MR
[20] A. P. Starovoitov, “Asimptotika kvadratichnykh approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Problemy fiziki, matematiki i tekhniki, 2014, no. 1(18), 74–80
[21] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 14 (2002), 193–220 | MR
[22] H. Stahl, “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function”, Constr. Approx., 23:2 (2006), 193–220 | DOI | MR
[23] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et probl'emes de Riemann–Hiebert”, C.R. Acad. Sci. Paris, Ser. I, 336 (2003), 893–896 | DOI | MR | Zbl
[24] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl
[25] A. B. J. Kuijlaars, W. Van Assche, F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hiebert approach”, Constr. Approx., 21 (2005), 351–412 | DOI | MR | Zbl
[26] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl
[27] F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function”, J. Approx. Theory, 131 (2004), 100–148 | DOI | MR | Zbl
[28] F. Wielonsky, “Asymptotics of Diagonal Hermite–Padé Approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl
[29] A. V. Astafeva, A. P. Starovoitov, “Asimptoticheskie svoistva mnogochlenov Ermita”, Doklady Natsionalnoi akademii nauk Belarusi, 59:3 (2015), 5–11
[30] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989
[31] A. I. Markushevich, Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1967