On Hall subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 42-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $H$ a subgroup of $G$. Then $H$ is said to be $\tau$-quasinormal in $G$ if $H$ permutes with all Sylow subgroups $\mathcal{Q}$ of $G$ such that $(|H|, |\mathcal{Q}|)=1$ and $(|H|, |\mathcal{Q}^G|)\ne1$. A generalization of Schur–Zassenhaus Theorem in terms of $\tau$-quasinormal subgroups is obtained.
Keywords: $\tau$-quasinormal subgroup, Sylow subgroup, Hall subgroup
Mots-clés : soluble group.
@article{PFMT_2016_2_a6,
     author = {V. O. Lukyanenko},
     title = {On {Hall} subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {42--44},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/}
}
TY  - JOUR
AU  - V. O. Lukyanenko
TI  - On Hall subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 42
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/
LA  - en
ID  - PFMT_2016_2_a6
ER  - 
%0 Journal Article
%A V. O. Lukyanenko
%T On Hall subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 42-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/
%G en
%F PFMT_2016_2_a6
V. O. Lukyanenko. On Hall subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 42-44. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/

[1] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl

[2] S. A. Chunikhin, Subgroups of Finite Groups, Wolters-Noordhoff, Groningen, 1969 | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000 | MR | Zbl

[5] W. Guo, A. N. Skiba, “Criteria of existence of Hall subgroups in non-soluble finite groups”, Acta Math. Sinica, English Series, 26:2 (2010), 295–304 | DOI | MR | Zbl

[6] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl

[7] W. Guo, K. P. Shum, A. N. Skiba, “Schur–Zassenhaus Theorem for $X$-permutable subgroups”, Algebra Colloq., 15:2 (2008), 185–192 | DOI | MR | Zbl

[8] O. H. Kegel, “Produkte nilpotenter Gruppen”, Arch. Math., 12:1 (1961), 90–93 | DOI | MR | Zbl

[9] O. H. Kegel, “Sylow–Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[10] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl