Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2016_2_a6, author = {V. O. Lukyanenko}, title = {On {Hall} subgroups of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {42--44}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/} }
V. O. Lukyanenko. On Hall subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 42-44. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/
[1] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl
[2] S. A. Chunikhin, Subgroups of Finite Groups, Wolters-Noordhoff, Groningen, 1969 | MR | Zbl
[3] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000 | MR | Zbl
[5] W. Guo, A. N. Skiba, “Criteria of existence of Hall subgroups in non-soluble finite groups”, Acta Math. Sinica, English Series, 26:2 (2010), 295–304 | DOI | MR | Zbl
[6] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl
[7] W. Guo, K. P. Shum, A. N. Skiba, “Schur–Zassenhaus Theorem for $X$-permutable subgroups”, Algebra Colloq., 15:2 (2008), 185–192 | DOI | MR | Zbl
[8] O. H. Kegel, “Produkte nilpotenter Gruppen”, Arch. Math., 12:1 (1961), 90–93 | DOI | MR | Zbl
[9] O. H. Kegel, “Sylow–Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[10] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl