On Hall subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 42-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $H$ a subgroup of $G$. Then $H$ is said to be $\tau$-quasinormal in $G$ if $H$ permutes with all Sylow subgroups $\mathcal{Q}$ of $G$ such that $(|H|, |\mathcal{Q}|)=1$ and $(|H|, |\mathcal{Q}^G|)\ne1$. A generalization of Schur–Zassenhaus Theorem in terms of $\tau$-quasinormal subgroups is obtained.
Keywords: $\tau$-quasinormal subgroup, Sylow subgroup, Hall subgroup
Mots-clés : soluble group.
@article{PFMT_2016_2_a6,
     author = {V. O. Lukyanenko},
     title = {On {Hall} subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {42--44},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/}
}
TY  - JOUR
AU  - V. O. Lukyanenko
TI  - On Hall subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 42
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/
LA  - en
ID  - PFMT_2016_2_a6
ER  - 
%0 Journal Article
%A V. O. Lukyanenko
%T On Hall subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 42-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/
%G en
%F PFMT_2016_2_a6
V. O. Lukyanenko. On Hall subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 42-44. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a6/