Symmetric token passing ring local area network with random choice of service discipline
Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 39-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The symmetric token-passing ring local area network with $N$ stations in which each station has a finite capacity buffer is studied. When token arrives the ordinary service discipline with the probability p or gated discipline with the opposite probability is on. The message arrival streams at each station are assumed to be independent Poisson processes with the same rate $\lambda$. The matrix-vector system for the steady-state probabilities and main characteristics of the considered network are obtained.
Keywords: token-passing ring local area network, finite capacity buffer, ordinary and gated service discipline, steady-state probabilities.
Mots-clés : station, message
@article{PFMT_2016_2_a5,
     author = {V. V. Burakovski},
     title = {Symmetric token passing ring local area network with random choice of service discipline},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--41},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a5/}
}
TY  - JOUR
AU  - V. V. Burakovski
TI  - Symmetric token passing ring local area network with random choice of service discipline
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 39
EP  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a5/
LA  - ru
ID  - PFMT_2016_2_a5
ER  - 
%0 Journal Article
%A V. V. Burakovski
%T Symmetric token passing ring local area network with random choice of service discipline
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 39-41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a5/
%G ru
%F PFMT_2016_2_a5
V. V. Burakovski. Symmetric token passing ring local area network with random choice of service discipline. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 39-41. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a5/