Formation of titanium nitride films by reactive magnetron sputtering under low pressure
Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 12-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The processes of reactive magnetron sputtering of titanium in the atmosphere of Ar/N$_2$ working gases under low pressure were studied. It was established that during high vacuum operating mode of magnetron sputtering system and high pumping rates under conditions of stabilization of the magnetron power the discharge voltage univalently depends on the concentration of nitrogen in the chamber, i. e., the characteristic hysteresis usual for reactive magnetron sputtering processes was not observed. At the same time titanium nitride layers with specific resistance less than 70 $\mu\Omega$ cm and microhardness greater than 28 GPa can be obtained with good reproducibility.
Keywords: reactive magnetron sputtering, microhardness, volume ware.
Mots-clés : titanium nitride, friction coefficient
@article{PFMT_2016_2_a1,
     author = {A. P. Dostanko and D. A. Golosov and S. M. Zavadski and S. N. Melnikov and J. E. Okojie and J. D. Kotingo and G. M. Ruban},
     title = {Formation of titanium nitride films by reactive magnetron sputtering under low pressure},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {12--17},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a1/}
}
TY  - JOUR
AU  - A. P. Dostanko
AU  - D. A. Golosov
AU  - S. M. Zavadski
AU  - S. N. Melnikov
AU  - J. E. Okojie
AU  - J. D. Kotingo
AU  - G. M. Ruban
TI  - Formation of titanium nitride films by reactive magnetron sputtering under low pressure
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 12
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a1/
LA  - ru
ID  - PFMT_2016_2_a1
ER  - 
%0 Journal Article
%A A. P. Dostanko
%A D. A. Golosov
%A S. M. Zavadski
%A S. N. Melnikov
%A J. E. Okojie
%A J. D. Kotingo
%A G. M. Ruban
%T Formation of titanium nitride films by reactive magnetron sputtering under low pressure
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 12-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a1/
%G ru
%F PFMT_2016_2_a1
A. P. Dostanko; D. A. Golosov; S. M. Zavadski; S. N. Melnikov; J. E. Okojie; J. D. Kotingo; G. M. Ruban. Formation of titanium nitride films by reactive magnetron sputtering under low pressure. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 12-17. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a1/

[1] Ph. Roquiny et al., “Colour control of titanium nitride coatings produced by reactive magnetron sputtering at temperature less than 100$^\circ$C”, Surface and Coatings Technology, 116–119 (1999), 278–283 | DOI

[2] S. Ohya et al., “Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators”, Superconductor Science Technology, 27:1 (2014), 1–10

[3] A. Vladescu et al., “Biocompatible thin films deposited by cathodic arc method”, Romanian Reports in Physics, 56:3 (2004), 460–465

[4] Az. Ahaitouf et al., “Process technology study of TiN/AlGaN/GaN Schottky contact on (111) silicon substrate”, J. Mater. Environ. Sci., 1 (2010), 309–312

[5] H. T. Kim et al., “Effect of substrate temperature and input power on TiN film deposition by low-frequency (60 Hz) PECVD”, Journal of the Korean Physical Society, 37:3 (2000), 319–323

[6] A. A. Andreev i dr., “Zakonomernosti vliyaniya strukturnogo sostoyaniya vakuumno-dugovykh pokrytii TiN na ikh stoikost k abrazivnomu iznosu”, Trenie i iznos, 35:6 (2014), 718–722

[7] L.-J. Meng et al., “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures”, Surface and Coatings Technology, 90 (1997), 64–70 | DOI

[8] Y. L. Jeyachandran et al., “Properties of titanium nitride films prepared by direct current magnetron sputtering”, Materials Science and Engineering A, 445–446 (2007), 223–236 | DOI

[9] P. J. Kelly et al., “Magnetron sputtering: a recent developments and applications”, Vacuum, 56 (2000), 159–172 | DOI

[10] J. Musil et al., “Reactive magnetron sputtering of thin films: present status and trends”, Thin Solid Films, 475 (2005), 208–218 | DOI

[11] W. D. Sproul et al., “Control of reactive sputtering processes”, Thin Solid Films, 491 (2005), 1–17 | DOI

[12] Zhu Chang et al., “Comparison of reactive magnetron and reactive ion-beam sputtering methods for deposition of silicon oxide thin films”, Journal of Applied Optics, 31:5 (2010), 855–859

[13] J. Musil, “Low-pressure magnetron sputtering”, Vacuum, 50:3–4 (1998), 363–372 | DOI

[14] D. A. Golosov, I. V. Svadkovskii, S. M. Zavadskii, “Nizkovakuumnyi rezhim raboty magnetronnykh raspylitelnykh sistem”, Materialy 6-oi mezhdunar. konferentsii po modifikatsii materialov puchkami chastits i plazmennymi potokami (Tomsk, Rossiya, 23–28 sentyabrya 2002 g.), 148–150

[15] I. V. Svadkovski et al., “Characterisation parameters for unbalanced magnetron sputtering systems”, Vacuum, 68:4 (2002), 283–290 | DOI

[16] D. A. Golosov et al., “Characteristics of unbalanced magnetron sputtering systems”, Surface Engineering and Applied Electrochemistry, 2002, no. 6, 56–64

[17] D. A. Golosov et al., “Joint functioning of magnetron sputtering system and End-Hall ion source”, Technical Physics, 59:9 (2014), 1326–1333 | DOI

[18] A. M. Chaplanov i dr., “Strukturnye i fazovye prevrascheniya v tonkikh plenkakh titana pri obluchenii azot-vodorodnoi plazmoi”, ZhTF, 69:10 (1999), 102–108 | MR

[19] G. V. Samsonov, Nitridy, Naukova dumka, Kiev, 1969, 380 pp.