Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2016_1_a10, author = {I. L. Sokhor}, title = {On finite $\pi$-soluble groups with no wide subgroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {63--67}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/} }
I. L. Sokhor. On finite $\pi$-soluble groups with no wide subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/
[1] V. S. Monakhov, Introduction to the Theory of Finite Groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp.
[2] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl
[3] V. S. Monakhov, “Finite $\pi$-solvable groups whose maximal subgroups have the Hall property”, Math. Notes, 84:3–4 (2008), 363–366 | DOI | MR | Zbl
[4] N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are hall”, Siberian Math. J., 53:5 (2012), 853–861 | DOI | MR | Zbl
[5] N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the hall property”, Siberian Advances in Math., 23:3 (2013), 196–209 | DOI
[6] Q. Zhang, L. Wang, “Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup”, Algebra Colloquium, 12 (2005), 301–307 | DOI | MR | Zbl
[7] The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, 2014 | MR | Zbl
[8] O. Y. Schmidt, “Groups all of whose subgroups are special”, Mat. Sb., 31:3–4 (1924), 366–372
[9] S. S. Lewischenko, “Finite quasibiprimary groups”, Groups defined by properties of group systems, Collection of scientific papers, Inst. matem. AN USSR, Kiev, 1979, 83–97 | MR
[10] S. A. Chunihin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964, 168 pp. | MR