On finite $\pi$-soluble groups with no wide subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is said to be wide if each prime divisor of the order $G$ divides the order $H$. We obtain the description of finite $\pi$-soluble groups with no wide maximal subgroups with $\pi$-number indices. We also investigate groups with $\pi$-special subgroups.
Keywords: finite groups, $\pi$-soluble groups, nilpotent groups.
@article{PFMT_2016_1_a10,
     author = {I. L. Sokhor},
     title = {On finite $\pi$-soluble groups with no wide subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--67},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - On finite $\pi$-soluble groups with no wide subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 63
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/
LA  - en
ID  - PFMT_2016_1_a10
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T On finite $\pi$-soluble groups with no wide subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 63-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/
%G en
%F PFMT_2016_1_a10
I. L. Sokhor. On finite $\pi$-soluble groups with no wide subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a10/

[1] V. S. Monakhov, Introduction to the Theory of Finite Groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp.

[2] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[3] V. S. Monakhov, “Finite $\pi$-solvable groups whose maximal subgroups have the Hall property”, Math. Notes, 84:3–4 (2008), 363–366 | DOI | MR | Zbl

[4] N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are hall”, Siberian Math. J., 53:5 (2012), 853–861 | DOI | MR | Zbl

[5] N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the hall property”, Siberian Advances in Math., 23:3 (2013), 196–209 | DOI

[6] Q. Zhang, L. Wang, “Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup”, Algebra Colloquium, 12 (2005), 301–307 | DOI | MR | Zbl

[7] The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, 2014 | MR | Zbl

[8] O. Y. Schmidt, “Groups all of whose subgroups are special”, Mat. Sb., 31:3–4 (1924), 366–372

[9] S. S. Lewischenko, “Finite quasibiprimary groups”, Groups defined by properties of group systems, Collection of scientific papers, Inst. matem. AN USSR, Kiev, 1979, 83–97 | MR

[10] S. A. Chunihin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964, 168 pp. | MR