On solving the Schrodinger equation with hypersingular kernel in momentum space
Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is obtained that the Schrödinger equation in the momentum representation for a linear confining potential for states with zero orbital angular momentum can be solved with high accuracy (far superior to other methods) using the special quadrature formulas for hypersingular integral.
Keywords: Schrödinger equation, momentum space, hypersingular integral.
@article{PFMT_2016_1_a0,
     author = {V. V. Andreev},
     title = {On solving the {Schrodinger} equation with hypersingular kernel in momentum space},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--10},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
TI  - On solving the Schrodinger equation with hypersingular kernel in momentum space
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 7
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_1_a0/
LA  - en
ID  - PFMT_2016_1_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%T On solving the Schrodinger equation with hypersingular kernel in momentum space
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 7-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_1_a0/
%G en
%F PFMT_2016_1_a0
V. V. Andreev. On solving the Schrodinger equation with hypersingular kernel in momentum space. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a0/

[1] A. Tang, J. W. Norbury, “The Nystrom plus correction method for solving bound state equations in momentum space”, Phys. Rev., E63 (2001), 066703

[2] J. W. Norbury, D. E. Kahana, K. Maung, “Confining potential in momentum space”, Can. J. Phys., 70 (1992), 86–89 | DOI

[3] M. A. Golberg, Numerical Solution of Integral Equations, Mathematical concepts and methods in science and engineering, Plenum Press, New York–London, 1990, 436 pp. | MR | Zbl

[4] A. A. Kornejchuk, “Quadrature formulae for singular integrals”, Zh. Vychisl. Mat. Mat. Fiz., 4, Suppl. 4 (1964), 64–74 (Russian) | MR | Zbl

[5] M. A. Sheshko, “Convergence of quadrature processes for a singular integral”, Soviet Mathematics (Izvestiya VUZ. Matematika), 20:12 (1976), 86–94 (Russian)

[6] C.-Y. Hui, D. Shia, “Evaluations of hypersingular integrals using Gaussian quadrature”, International Journal for Numerical Methods in Engineering, 44:2 (1999), 205–214 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] A. C. Kaya, F. Erdogan, “On the solution of integral equations with strongly singular kernels”, Quart. Appl. Math., XLV (1987), 105–122 | MR | Zbl

[8] H. R. Kutt, On the numerical evaluation of finite part integrals involving an algebraic singularity, Ph.D. thesis, Stellenbosch University, Stellenbosch, 1975

[9] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Chapman Hall/Crc, 2002, 335 pp. | MR

[10] J.-K. Chen, “Spectral method for the Cornell and screened Cornell potentials in momentum space”, Phys. Rev. D, 88 (2013), 076006 ; Erratum, Phys. Rev. D, 89 (2014), 099904 | DOI | DOI

[11] A. Deloff, “Quarkonium bound-state problem in momentum space revisited”, Annals Phys., 322 (2007), 2315–2326 | DOI | MR | Zbl

[12] H. Hersbach, “Relativistic linear potential in momentum space”, Phys. Rev. D, 47 (1993), 3027–3033 | DOI

[13] S. Leitão, A. Stadler, M. T. Peña, E. P. Biernat, “Linear confinement in momentum space: singularity-free bound-state equations”, Phys. Rev., D90:9 (2014), 096003