Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2015_4_a13, author = {A. R. Mirotin and R. V. Dyba}, title = {On finite dimensional and nuclear operators in {Hardy} spaces $H^2$ on compact {Abelian} groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {74--79}, publisher = {mathdoc}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/} }
TY - JOUR AU - A. R. Mirotin AU - R. V. Dyba TI - On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups JO - Problemy fiziki, matematiki i tehniki PY - 2015 SP - 74 EP - 79 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/ LA - ru ID - PFMT_2015_4_a13 ER -
A. R. Mirotin; R. V. Dyba. On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups. Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 74-79. http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/
[1] V. V. Peller, Operatory Gankelya i ikh prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 1028 pp.
[2] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980, 384 pp.
[3] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, in 2 vol., v. I, Amer. Math. Soc., 2002, 461 pp. | MR
[4] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, in 2 vol., v. II, Amer. Math. Soc., 2002, 439 pp. | MR
[5] A. R. Mirotin, “Fredgolmovy i spektralnye svoistva teplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Matem. sbornik, 202:5 (2011), 101–116 | DOI | MR | Zbl
[6] V. Adukov, “Wiener–Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 1993, no. 16, 305–332 | DOI | MR | Zbl
[7] T. Ehrhardt, C. van der Mee, L. Rodman, I. Spitkovski, “Factorization in Weighted Wiener Matrix Algebras on Linearly Ordered Abelian Groups”, Int. Eq. Oper. Th., 58:1 (2007), 65–86 | DOI | MR | Zbl
[8] A. R. Mirotin, R. V. Dyba, “Svoistva operatorov Gankelya nad polozhitelnym konusom lineino uporyadochennykh abelevykh grupp”, KhI Belorusskaya matematicheskaya konferentsiya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 5–9 noyabrya 2012 g.), v. 1, Institut matematiki NAN Belarusi, Mn., 2012, 37–38 | MR
[9] A. R. Mirotin, R. V. Dyba, “Funktsii ogranichennoi srednei ostsillyatsii i gankelevy operatory na kompaktnykh abelevykh gruppakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 2, 2014, 135–144 | MR
[10] R. V. Dyba, “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3(8), 57–60 | MR
[11] W. Rudin, Fourier analysis on groups, Intersciense Publishers, New York–London, 1962, 285 pp. | MR | Zbl
[12] L. S. Pontryagin, Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp.
[13] Yan Chaozong, Chen Xiaoman, Guo Kunyu, “Hankel operators and Hankel algebras”, Chin. Ann. of Math., 19 B:1 (1998), 65–76 | MR | Zbl