On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups
Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

Compact and connected Abelian group $G$ with totally ordered dual is considered. It is shown that nontrivial finite rank Hankel operator exists on $G$ if and only if the dual group contains the first positive element. In this case the classical theorems by Kroneker, Hartman, and Peller are generalized to the case of Hankel operators on $G$.
Keywords: compact Abelian group, Hankel operator, finite rank operator, nuclear operator.
@article{PFMT_2015_4_a13,
     author = {A. R. Mirotin and R. V. Dyba},
     title = {On finite dimensional and nuclear operators in {Hardy} spaces $H^2$ on compact {Abelian} groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--79},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - R. V. Dyba
TI  - On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 74
EP  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/
LA  - ru
ID  - PFMT_2015_4_a13
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A R. V. Dyba
%T On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 74-79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/
%G ru
%F PFMT_2015_4_a13
A. R. Mirotin; R. V. Dyba. On finite dimensional and nuclear operators in Hardy spaces $H^2$ on compact Abelian groups. Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 74-79. http://geodesic.mathdoc.fr/item/PFMT_2015_4_a13/

[1] V. V. Peller, Operatory Gankelya i ikh prilozheniya, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 1028 pp.

[2] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980, 384 pp.

[3] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, in 2 vol., v. I, Amer. Math. Soc., 2002, 461 pp. | MR

[4] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, in 2 vol., v. II, Amer. Math. Soc., 2002, 439 pp. | MR

[5] A. R. Mirotin, “Fredgolmovy i spektralnye svoistva teplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Matem. sbornik, 202:5 (2011), 101–116 | DOI | MR | Zbl

[6] V. Adukov, “Wiener–Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 1993, no. 16, 305–332 | DOI | MR | Zbl

[7] T. Ehrhardt, C. van der Mee, L. Rodman, I. Spitkovski, “Factorization in Weighted Wiener Matrix Algebras on Linearly Ordered Abelian Groups”, Int. Eq. Oper. Th., 58:1 (2007), 65–86 | DOI | MR | Zbl

[8] A. R. Mirotin, R. V. Dyba, “Svoistva operatorov Gankelya nad polozhitelnym konusom lineino uporyadochennykh abelevykh grupp”, KhI Belorusskaya matematicheskaya konferentsiya, Tez. dokl. Mezhdunar. nauch. konf. (Minsk, 5–9 noyabrya 2012 g.), v. 1, Institut matematiki NAN Belarusi, Mn., 2012, 37–38 | MR

[9] A. R. Mirotin, R. V. Dyba, “Funktsii ogranichennoi srednei ostsillyatsii i gankelevy operatory na kompaktnykh abelevykh gruppakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 2, 2014, 135–144 | MR

[10] R. V. Dyba, “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3(8), 57–60 | MR

[11] W. Rudin, Fourier analysis on groups, Intersciense Publishers, New York–London, 1962, 285 pp. | MR | Zbl

[12] L. S. Pontryagin, Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp.

[13] Yan Chaozong, Chen Xiaoman, Guo Kunyu, “Hankel operators and Hankel algebras”, Chin. Ann. of Math., 19 B:1 (1998), 65–76 | MR | Zbl