Generalized Bessel--Gaussian beams of continuous order
Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new solutions of the parabolic equation featuring the generalized Bessel–Gaussian beams of the continuous order are offered. They are characterized by three free continuous parameters and possess a spiral wave front. Restrictions on these parameters at which the explored fractional beams transfer terminating power are discovered. Graphic simulation of such beams is held.
Keywords: fractional beams, beams of Bessel–Gaussian, square integrability.
@article{PFMT_2015_4_a1,
     author = {S. S. Girgel},
     title = {Generalized {Bessel--Gaussian} beams of continuous order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {11--15},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_4_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Generalized Bessel--Gaussian beams of continuous order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 11
EP  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_4_a1/
LA  - ru
ID  - PFMT_2015_4_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Generalized Bessel--Gaussian beams of continuous order
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 11-15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_4_a1/
%G ru
%F PFMT_2015_4_a1
S. S. Girgel. Generalized Bessel--Gaussian beams of continuous order. Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 11-15. http://geodesic.mathdoc.fr/item/PFMT_2015_4_a1/

[1] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[2] J. C. Gutierrez-Vega, “Fractionalization of optical beams. I: Planar Analysis”, Optics Letters, 32:11 (2007), 1521–1523 | DOI

[3] J. C. Gutierrez-Vega, “Fractionalization of optical beams. II: Elegant Laguerre–Gaussian modes”, Optics Express, 15:10 (2007), 6300–6313 | DOI

[4] J. C. Gutierrez-Vega, C. Lopez-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence”, J. Opt. A. Pure Appl. Opt., 2008, 10015009, 8 pp.

[5] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI

[6] J. Durnin, “Exact solutions for nondiffracting beams. I: The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI

[7] F. Gori, G. Guattari, C. Padovani, “Bessel-Gauss beams”, Optics Communications, 64:6 (1987), 491–495 | DOI

[8] V. Bagini et al., “Generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:6 (1996), 1155–1166 | MR | Zbl

[9] C. Palma et al., “Imaging of generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:11 (1996), 2269–2277 | DOI | MR

[10] M. Santarsiero, “Propagation of general Bessel–Gauss beams throught ABCD optical systems”, Optics Communications, 132 (1996), 1–7 | DOI

[11] S. S. Girgel, “Polyarizatsionnye svoistva bessel-gaussovykh puchkov sveta. Problemy vzaimodeistviya izlucheniya s veschestvom”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 6(9), 150–154

[12] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2006, no. 6(39), Ch. 1, 49–52 | MR

[13] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. II, Nauka, M., 1974, 295 pp. | MR

[14] U. Miller, Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp. | MR

[15] M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268

[16] E. G. Abramochkin, V. G. Volosnikov, “Spiralnye puchki sveta”, UFN, 174:12 (2004), 1273–1300 | DOI

[17] Dzh. A. Stretton, Teoriya elektromagnetizma, OGIZ. GITTL, M., 1948, 539 pp.

[18] C. J. R. Sheppard, T. Wilson, “Gaussian-beam theory of lenses with annular aperture”, IEEE J. Microwaves, Optics and Acoustics, 2 (1978), 105–112 | DOI

[19] R. A. Waldron, “A helical coordinate system and its applications in electromagnetic theory”, Quart. Journ. Mech. and Applied Math., XI:4 (1958), 438–461 | DOI | MR | Zbl

[20] P. L. Overfelt, “Scalar optical beams with helical symmetry”, Phys. Rev. A, 46:6 (1992), 3516–3522 | DOI | MR

[21] C. C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II: Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14

[22] C. C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I: Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24