Mots-clés : exact solutionsr.
@article{PFMT_2015_3_a3,
author = {E. M. Ovsiyuk},
title = {Electromagnetic field in the {Majorana{\textendash}Oppenheimer} formalism in the anti de {Sitter} {Universe}},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {21--25},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/}
}
E. M. Ovsiyuk. Electromagnetic field in the Majorana–Oppenheimer formalism in the anti de Sitter Universe. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 21-25. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/
[1] H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann's Vorlesungen, Friedrich Vieweg und Sohn, Braunschweig, 1901
[2] L. Silberstein, “Elektromagnetische Grundgleichungen in bivectorieller Behandlung”, Ann. Phys. (Leiptzig), 22 (1907), 579–586 | DOI | Zbl
[3] L. Silberstein, “Nachtrag zur Abhandlung Uber elektromagnetische Grundgleichungen in bivektorieller Behandlung”, Ann. der Phys., 24 (1907), 783–784 | DOI | Zbl
[4] L. Silberstein, The Theory of Relativity, Macmillan, London, 1914 | Zbl
[5] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwells Equations, University Press, Cambridge, 1915
[6] E. Majorana, Scientific Papers (unpublished). Deposited at the «Domus Galileana», Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16;17, p. 83, 159
[7] J. Oppenheimer, “Note on Light Quanta and the Electromagnetic Field”, Phys. Rev., 38 (1931), 725–746 | DOI
[8] I. Bialynicki-Birula, “On the Wave Function of the Photon”, Acta Phys. Polon., 86 (1994), 97–116
[9] I. Bialynicki-Birula, “Photon Wave Function”, Progress in Optics, 36 (1996), 248–294
[10] W. A. Rodrigues, E. C. de Oliveira, The Many Faces of Maxwell, Dirac and Einstein Equations, Lecture Notes in Physics, 722, Springer, 2007 | DOI | MR | Zbl
[11] A. A. Bogush, G. G. Krylov, E. M. Ovsiyuk, V. M. Red'kov, “Maxwell Equations in Complex form of Majorana–Oppenheimer, Solutions with Cylindric Symmetry in Riemann $S_3$ and Lobachevsky $H_3$ spaces”, Ricerche di matematica, 59:1 (2010), 59–96 | DOI | MR | Zbl
[12] V. M. Red'kov, N. G. Tokarevskaya, G. J. Spix, “Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part I: Minkowski Space”, Adv. Appl. Clifford Algebras, 22 (2012), 1129–1149 | DOI | MR | Zbl
[13] V. M. Red'kov, N. G. Tokarevskaya, G. J. Spix, “Majorana–Oppenheimer Approach to Maxwell Electrodynamics. Part II: Curved Riemannian Space”, Adv. Appl. Clifford Algebras, 23 (2013), 165–178 | DOI | MR | Zbl
[14] V. M. Redkov, E. M. Ovsiyuk, Quantum mechanics in spaces of constant curvature, Nova Science Publishers, Inc., New York, 2012, 434 pp.
[15] E. Ovsiyuk, V. Redkov, Elektrodinamika Maksvella v prostranstve s neevklidovoi geometriei, 2-e izd., LAP LAMBERT Academic Publishing, Deutschland, 2012, 242 pp.
[16] S. W. Hawking, G. F. R. Ellis, The large scale structure of space-time, University Press, Cambridge, 1973 | MR | Zbl
[17] O. V. Veko, N. D. Vlasii, E. M. Ovsiyuk, V. M. Red'kov, Yu. A. Sitenko, “Electromagnetic Field on de Sitter Expanding Universe: Majorana–Oppenheimer Formalism, Exact Solutions in non-Static Coordinates”, Nonlinear Phenomena in Complex Systems, 17:1 (2014), 17–39 | Zbl
[18] M. N. Olevskii, “Triortogonalnye sistemy v prostranstvakh postoyannoi krivizny, v kotorykh uravnenie $\Delta_2U+\lambda U=0$ dopuskaet polnoe razdelenie peremennykh”, Mat. sb., 27 (1950), 379–426 | MR | Zbl