Electromagnetic field in the Majorana--Oppenheimer formalism in the anti de Sitter Universe
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 21-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact solutions with spherical symmetry of the Maxwell equations in the oscillating anti de Sitter Universe are constructed. 3-Dimensional complex formalism by Majorana–Oppenheimer, generalized to pseudo-Riemannian space-time models in accordance with the tetrad method, is applied. The established dependence of the constructed solutions on the time variable leads to independence of the Pointing vector on time. This means that the change in time of the anti de Sitter geometry cannot be seen by measuring the energy flow density.
Keywords: Maxwell's equations, tetrad formalism, anti de Sitter Universe, non-static coordinates, complex formalism of the Majorana–Oppenheime
Mots-clés : exact solutionsr.
@article{PFMT_2015_3_a3,
     author = {E. M. Ovsiyuk},
     title = {Electromagnetic field in the {Majorana--Oppenheimer} formalism in the anti de {Sitter} {Universe}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--25},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
TI  - Electromagnetic field in the Majorana--Oppenheimer formalism in the anti de Sitter Universe
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 21
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/
LA  - ru
ID  - PFMT_2015_3_a3
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%T Electromagnetic field in the Majorana--Oppenheimer formalism in the anti de Sitter Universe
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 21-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/
%G ru
%F PFMT_2015_3_a3
E. M. Ovsiyuk. Electromagnetic field in the Majorana--Oppenheimer formalism in the anti de Sitter Universe. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 21-25. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a3/