On $\sigma$-properties of finite groups~II
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 70-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $\sigma=\{\sigma_i \mid i\in I\}$ some partition of the set $\mathbb{P}$ of all primes and $\Pi$ a subset of the set $\sigma$. A set $\mathcal{H}$ of subgroups of $G$ is said to be a complete Hall $\Pi$-set of $G$ if $\mathcal{H}$ contains exact one Hall $\sigma_i$-subgroup of $G$ for every $\sigma_i\in\Pi$ such that $\sigma_i\cap\pi(G)\ne\varnothing$. We say also that $G$ is: $\Pi$-full if $G$ possess a complete Hall $\Pi$-set; a $\Pi$-full group of Sylow type if for each $\sigma_i\in\Pi$, every subgroup $E$ of $G$ is a $D_{\sigma_i}$-group, that is, $E$ has a Hall $\sigma_i$-subgroup $H$ and every $\sigma_i$-subgroup of $E$ is contained in some conjugate of $H^x$ ($x\in E$). In this paper we study properties of finite $\Pi$-full groups. The work continues the research of the paper [1].
Keywords: finite group, $\Pi$-full group, $\sigma$-nilpotent group
Mots-clés : $\sigma$-soluble group, $\sigma$-quasinilpotent group.
@article{PFMT_2015_3_a13,
     author = {A. N. Skiba},
     title = {On $\sigma$-properties of finite {groups~II}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--83},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a13/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On $\sigma$-properties of finite groups~II
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 70
EP  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a13/
LA  - ru
ID  - PFMT_2015_3_a13
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On $\sigma$-properties of finite groups~II
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 70-83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a13/
%G ru
%F PFMT_2015_3_a13
A. N. Skiba. On $\sigma$-properties of finite groups~II. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 70-83. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a13/