Supershort pulse splitting under resonant reflection from a thin film
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 29-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear dynamic effect — splitting of the supershort optical pulse reflected by a dense resonant medium thin layer is simulated. The effect arises as a result of the coherent interaction, developing in a dynamic phase adjustment of the laser pulse field and the polarization of the medium of a thin layer. The decisive factor in the development of the splitting process is the effect of the phase shift due to the influence of neighbor dipole interactions on the absorption line.
Keywords: pulse resonant reflection, thin optical films
Mots-clés : dipole-dipolar interaction.
@article{PFMT_2015_2_a3,
     author = {Yu. V. Yurevich and V. A. Yurevich and T. V. Timoschenko},
     title = {Supershort pulse splitting under resonant reflection from a thin film},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {29--32},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a3/}
}
TY  - JOUR
AU  - Yu. V. Yurevich
AU  - V. A. Yurevich
AU  - T. V. Timoschenko
TI  - Supershort pulse splitting under resonant reflection from a thin film
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 29
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a3/
LA  - ru
ID  - PFMT_2015_2_a3
ER  - 
%0 Journal Article
%A Yu. V. Yurevich
%A V. A. Yurevich
%A T. V. Timoschenko
%T Supershort pulse splitting under resonant reflection from a thin film
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 29-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a3/
%G ru
%F PFMT_2015_2_a3
Yu. V. Yurevich; V. A. Yurevich; T. V. Timoschenko. Supershort pulse splitting under resonant reflection from a thin film. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 29-32. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a3/

[1] B. Ya. Zeldovich, A. N. Chudinov, A. A. Shulginov, “Vliyanie vozbuzhdeniya poverkhnostnoi elektromagnitnoi volny na vremennýyu formu otrazhennogo lazernogo impulsa”, Pisma v ZhTF, 18:22 (1992), 61–65 | Zbl

[2] M. I. Bakunov, N. S. Gurbatov, “Pacscheplenie elektromagnitnogo impulsa pri rezonansnom otrazhenii ot plazmennoi plenki”, ZhTF, 68:6 (1997), 65–71

[3] I. V. Zlodeev, Yu. F. Nasedkina, D. I. Sementsov, “Transformatsiya gaussova impulsa pri otrazhenii ot rezonansnoi tonkoplenochnoi struktury”, Opt. i spektr., 113:2 (2012), 234–241

[4] E. V. Timoschenko, V. A. Yurevich, “Sverkhizluchatelnaya trancfopmatsiya svetovyx impulsov pri otrazhenii granichnym nelineinym sloem”, Doklady NAN Belarusi, 54:6 (2010), 56–61

[5] O. N. Gadomskii, R. A. Vlasov, Ekho-spektroskopiya poverkhnosti, Havuka i tekhnika, Mn., 1990, 216 pp.

[6] V. Malyshev, E. C. Jarque, “Spatial effects in nonlinear resonant reflection from the boundary of a dense semi-infinite two-level medium: normal incidence”, J. Opt. Soc. Am. B, 14:5 (1997), 1167–1172 | MR

[7] H. Htoon, C. K. Shih, T. Takagahara, “Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation”, Chaos, Solitons and Fractals, 16:3 (2003), 439–448 | Zbl

[8] A. E. Kaplan, S. N. Volkov, “Povedenie lokalnykh polei v nanoreshetkakh iz silno vzaimodeistvuyuschikh atomov: nanostraty, gigantskie rezonansy, «magicheskie» chisla i opticheskaya bistabilnost”, UFN, 179:5 (2009), 539–547

[9] T. Meier, R. Thomas, S. W. Koch, Coherent Semiconductor Optics: From Basic Concepts to Nanostructure Applications, Springer, 2007, 312 pp.