Features of optical-acoustical diagnostics of wedge-shaped defects of solids
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The participants of the optical-acoustical diagnosing of wedge-form defects in solid state body is investigated. It is shown that due to interferential effects scattering efficiency varies nonlinearly with an increase of defect size, reaching a maximum at a certain amount of it. It has been established that the study of the pulse energy characteristics of ultrasonic scattering radiation on the wedge-form defects, at the approximation different from Rayleigh allows determining the size of the defect, angle at the vertex of the wedge, angle of the inclination and location.
Keywords: optical-acoustical diagnosing, wedge-form defect, ultrasonic wave, ultrasonic scattering, relative intensity.
@article{PFMT_2015_1_a2,
     author = {G. V. Kulak and A. G. Matveeva and T. V. Nikolaenko},
     title = {Features of optical-acoustical diagnostics of wedge-shaped defects of solids},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--20},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a2/}
}
TY  - JOUR
AU  - G. V. Kulak
AU  - A. G. Matveeva
AU  - T. V. Nikolaenko
TI  - Features of optical-acoustical diagnostics of wedge-shaped defects of solids
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 16
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a2/
LA  - ru
ID  - PFMT_2015_1_a2
ER  - 
%0 Journal Article
%A G. V. Kulak
%A A. G. Matveeva
%A T. V. Nikolaenko
%T Features of optical-acoustical diagnostics of wedge-shaped defects of solids
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 16-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a2/
%G ru
%F PFMT_2015_1_a2
G. V. Kulak; A. G. Matveeva; T. V. Nikolaenko. Features of optical-acoustical diagnostics of wedge-shaped defects of solids. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 16-20. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a2/

[1] R. Truell, Ch. Elbaum, B. Chik, Ultrazvukovye metody v fizike tverdogo tela, per. s angl. pod red. N. G. Mikhailova i V. V. Lemanova, Mir, M., 1972, 307 pp.

[2] G. Kaino, Akusticheskie volny. Ustroistva, vizualizatsiya i analogovaya obrabotka signalov, Mir, M., 1990, 652 pp.

[3] E. L. Shenderov, Izluchenie i rasseyanie zvuka, Sudostroenie, M., 1989, 301 pp.

[4] J. B. Keller, “Geometrical theory of diffraction”, J. Opt. Soc. Amer., 52 (1962), 116–130 | DOI

[5] P. Ya. Ufimtsev, Metod kraevykh voln v fizicheskoi teorii difraktsii, Sov. radio, M., 1962, 301 pp.

[6] P. Ya. Ufimtsev, “Theory of acoustical edge waves”, J. Acoust. Soc. Amer., 96:2 (1989), 463–474 | DOI

[7] V. T. Grinchenko, V. T. Matsypura, “Rasseyanie zvuka na konechnykh klinovidnykh ob'ektakh”, Akustichnii visnik, 6:2 (2003), 23–33

[8] V. T. Grinchenko, V. V. Meleshko, Garmonicheskie kolebaniya i volny v uprugikh telakh, Navukova dumka, Kiev, 1981, 284 pp.

[9] V. L. Busov, “Rasseyanie ultrazvukovykh voln na mikrotreschinakh v fragmentirovannykh polikristallakh”, Akustichnii visnik, 10:3 (2007), 19–24

[10] V. G. Gudelev, G. V. Kulak, A. G. Matveeva, “Optiko-akusticheskaya diagnostika treschin v tverdykh telakh”, Izvestiya NAN Belarusi. Ser. fiz.-mat. nauk, 2013, no. 1, 88–91

[11] S. Y. Zang, M. Paul, S. Fassbendtr, U. Schleichert, W. Arnold, “Experimental study of laser-generated shear waves using interferometry”, Res. Nondestr. Eval., 2 (1990), 143–155 | DOI

[12] G. A. Budenkov, O. V. Nedzvetskaya, Dinamicheskie zadachi teorii uprugosti, Fizmatlit, M., 2004, 135 pp.