Soluble formations with the Shemetkov property
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 82-87

Voir la notice de l'article provenant de la source Math-Net.Ru

All saturated soluble formations whose all $s$-critical groups are soluble were described. With every local formation $\mathfrak{F}=LF(f)$, such that $f(p)=\mathfrak{S}_{\pi(f(p))}$ for all $p\in\pi(\mathfrak{F})$ and $f(p)=\varnothing$ otherwise, was associated directed graph $\Gamma(\mathfrak{F},f)$ without loops whose vertices are prime numbers from $\pi(\mathfrak{F})$ and $(p_i,p_j)$ is an edge of $\Gamma(\mathfrak{F},f)$ if and only if $p_j\in\pi(f(p_i))$. With the help of such kind’s graphs all hereditary soluble formations with the Shemetkov property were described.
Keywords: minimal simple group, $s$-critical group, hereditary local formation, formation with the Shemetkov property, graph associated with formation.
@article{PFMT_2015_1_a15,
     author = {V. I. Murashka},
     title = {Soluble formations with the {Shemetkov} property},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {82--87},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/}
}
TY  - JOUR
AU  - V. I. Murashka
TI  - Soluble formations with the Shemetkov property
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 82
EP  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/
LA  - en
ID  - PFMT_2015_1_a15
ER  - 
%0 Journal Article
%A V. I. Murashka
%T Soluble formations with the Shemetkov property
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 82-87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/
%G en
%F PFMT_2015_1_a15
V. I. Murashka. Soluble formations with the Shemetkov property. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 82-87. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/