Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2015_1_a15, author = {V. I. Murashka}, title = {Soluble formations with the {Shemetkov} property}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {82--87}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/} }
V. I. Murashka. Soluble formations with the Shemetkov property. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 82-87. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a15/
[1] O. Yu. Shmidt, “Groups all whose subgroups are special”, Mat. Sbornik, 31 (1924), 366–372 (In Russian)
[2] N. Ito, “Note on (LM)-groups of finite order”, Kodai Math. Seminar Report, 3:1–2 (1951), 1–6 | DOI
[3] The Kourovka Notebook: Unsolved Problems in Group Theory, Novosibirsk, 1992
[4] V. N. Semenchuck, A. F. Vasil'ev, “Characterization of local formations $\mathfrak{F}$ by properties of minimal non-$\mathfrak{F}$-groups”, Studies of normal and subgroup structure of finite groups, Nauka i technika, 1984, 175–181
[5] A. N. Skiba, “On a class of formations of finite groups”, Dokl. BSSR, 34:11 (1994), 982–985 (In Russian)
[6] A. Ballester-Bolinshes, M. D. Perez-Ramos, “On $\mathfrak{F}$-critical groups”, J. Algebra, 174 (1995), 948–958 | DOI
[7] S. F. Kamornikov, M. V. Selkin, Subgroup's functors and classes of finite groups, Belaruskaya nauka, Minsk, 2003, 254 pp. (In Russian)
[8] S. F. Kamornikov, “On two problems by L. A. Shemetkov”, Siberian Mathematical Journal, 35:4 (1994), 713–721 | DOI
[9] T. Hawkes, “On the class of Sylow tower groups”, Math. Z., 105 (1968), 393–398 | DOI
[10] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp.
[11] B. Huppert, Endlicher gruppen, v. I, Springer, Berlin, 1967, 793 pp.
[12] M. Suzuki, “On a class of doubly transitive groups”, Ann. Math., 75 (1962), 105–145 | DOI
[13] A. N. Skiba, Algebra of formations, Belaruskaya nauka, Minsk, 1997, 240 pp. (In Russian)