On the lattice of all solvable regular transitive subgroup functors
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the lattice $\mathrm{R\,T}(\mathfrak{S})$ of all regular transitive subgroup functors are investigated. The notion of $\theta$-subnormal subgroup functor is introduced. It is proved that the set $\mathrm{SUM}(\mathfrak{S})$ of all $\theta$-subnormal subgroup functors is a sublattice and ideal of the lattice $\mathrm{R\,T}(\mathfrak{S})$. The connection of lattices $\mathrm{R\,T}(\mathfrak{S})$ and $\mathrm{SUM}(\mathfrak{S})$ is investigated. The existence of a congruence $\Psi$ defined on $\mathrm{R\,T}(\mathfrak{S})$ such that the lattices $\mathrm{R\,T}(\mathfrak{S})/\Psi$ and $\mathrm{SUM}(\mathfrak{S})$ are isomorphic, in particular, is proved.
Mots-clés : finite solvable group
Keywords: subgroup functor, regular transitive subgroup functor, lattice, congruence, isomorphism of lattices.
@article{PFMT_2015_1_a14,
     author = {S. F. Kamornikov},
     title = {On the lattice of all solvable regular transitive subgroup functors},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {78--81},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a14/}
}
TY  - JOUR
AU  - S. F. Kamornikov
TI  - On the lattice of all solvable regular transitive subgroup functors
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 78
EP  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a14/
LA  - ru
ID  - PFMT_2015_1_a14
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%T On the lattice of all solvable regular transitive subgroup functors
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 78-81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a14/
%G ru
%F PFMT_2015_1_a14
S. F. Kamornikov. On the lattice of all solvable regular transitive subgroup functors. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 78-81. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a14/

[1] A. N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp.

[2] R. Carter, T. Hawkes, “The $\mathfrak{F}$-normalisers of a finite soluble group”, J. Algebra, 5:2 (1967), 175–202 | DOI

[3] O. H. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math., 30:3 (1978), 225–228 | DOI

[4] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp.

[5] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[6] S. F. Kamornikov, V. N. Tyutyanov, “Kriticheskie gruppy nasledstvennoi lokalnoi sverkhradikalnoi formatsii”, Problemy fiziki, matematiki i tekhniki, 2013, no. 2(15), 66–75

[7] S. F. Kamornikov, “Razreshimye giperradikalnye formatsii”, Problemy fiziki, matematiki i tekhniki, 2013, no. 4(17), 55–58

[8] S. F. Kamornikov, “Sverkhradikalnye formatsii”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2014, no. 3(84), 62–70

[9] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003, 256 pp.

[10] V. A. Artamonov i dr., Obschaya algebra, v. 2, Nauka, M., 1991, 480 pp.

[11] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187

[12] S. F. Kamornikov, “Obobschennye podgruppy Frattini kak koradikaly grupp”, Mat. zametki, 87:3 (2010), 402–411 | DOI

[13] L. A. Skornyakov, Elementy obschei algebry, Nauka, M., 1983, 272 pp.

[14] A. Mann, “On subgroups of finite soluble groups, III”, Israel J. Math., 16:4 (1973), 446–451 | DOI