@article{PFMT_2015_1_a12,
author = {V. A. Vasilyev},
title = {On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {66--71},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/}
}
V. A. Vasilyev. On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 66-71. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/
[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin etc., 1994, 572 pp.
[2] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377
[3] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp.
[4] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin etc., 1992, 891 pp.
[5] L. A. Shemetkov, A. N. Skiba, “On the $\mathfrak{X}\Phi$-hypercentre of finite groups”, J. Algebra, 322 (2009), 2106–2117 | DOI
[6] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.
[7] H. G. Bray et al., Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp.
[8] V. A. Vasilev, “Konechnye gruppy s modulyarnymi podgruppami poryadka 4”, Izvestiya GGU im. F. Skoriny, 2014, no. 3(84), 30–34
[9] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin etc., 1967, 793 pp.
[10] V. A. Vasilev, A. N. Skiba, “Ob odnom obobschenii modulyarnykh podgrupp”, Ukr. mat. zhurn., 63:10 (2011), 1314–1325
[11] V. A. Vasilev, “Konechnye gruppy s $m$-dobavlyaemymi maksimalnymi podgruppami silovskikh podgrupp”, Izvestiya GGU im. F. Skoriny, 2011, no. 4(67), 29–37