On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 66-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $M$ of a group $G$ is a modular subgroup in $G$ if the following conditions are true: $\langle X, M\cap Z\rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ with $X\leqslant Z$, and $\langle M, Y\cap Z\rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ with $M\leqslant Z$. Conditions for $\mathfrak{U}\Phi$-embedding of hypercentral subgroups of finite groups with given modular primary subgroups are found.
Keywords: finite group, modular subgroup, Sylow $p$-subgroup, $\mathfrak{U}\Phi$-hypercentre.
@article{PFMT_2015_1_a12,
     author = {V. A. Vasilyev},
     title = {On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {66--71},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/}
}
TY  - JOUR
AU  - V. A. Vasilyev
TI  - On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 66
EP  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/
LA  - ru
ID  - PFMT_2015_1_a12
ER  - 
%0 Journal Article
%A V. A. Vasilyev
%T On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 66-71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/
%G ru
%F PFMT_2015_1_a12
V. A. Vasilyev. On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 66-71. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a12/

[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin etc., 1994, 572 pp.

[2] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377

[3] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp.

[4] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin etc., 1992, 891 pp.

[5] L. A. Shemetkov, A. N. Skiba, “On the $\mathfrak{X}\Phi$-hypercentre of finite groups”, J. Algebra, 322 (2009), 2106–2117 | DOI

[6] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[7] H. G. Bray et al., Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp.

[8] V. A. Vasilev, “Konechnye gruppy s modulyarnymi podgruppami poryadka 4”, Izvestiya GGU im. F. Skoriny, 2014, no. 3(84), 30–34

[9] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin etc., 1967, 793 pp.

[10] V. A. Vasilev, A. N. Skiba, “Ob odnom obobschenii modulyarnykh podgrupp”, Ukr. mat. zhurn., 63:10 (2011), 1314–1325

[11] V. A. Vasilev, “Konechnye gruppy s $m$-dobavlyaemymi maksimalnymi podgruppami silovskikh podgrupp”, Izvestiya GGU im. F. Skoriny, 2011, no. 4(67), 29–37