Observation of linear systems on the principle of disclosable loop
Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the use of multidimensional signals of impulse and discrete measuring devices an optimal observation problem for stationary and nonstationary objects is considered. Concepts of a priori and current distributions of the initial state are introduced. A realization method of positional solving of the optimal observation problem is presented on the base of disclosing loop. To accelerate the numerical computations it is suggested to use a parallelizing procedure. For the stationary objects additional accelerations of computations are achieved by recurrent equations, parallelizing procedures and the “set of weights” method. The results are illustrated by the examples of the 4th order dynamical object.
Keywords: stationary object, nonstationary object, impulse measuring devices, discrete measuring devices, observation on the principle of openable loop, parallel computing, “set of weight” method.
Mots-clés : on-line observation, positional solution
@article{PFMT_2014_4_a9,
     author = {R. Gabasov and F. M. Kirillova and Vo Thi Thanh Ha},
     title = {Observation of linear systems on the principle of disclosable loop},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {60--69},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_4_a9/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - F. M. Kirillova
AU  - Vo Thi Thanh Ha
TI  - Observation of linear systems on the principle of disclosable loop
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 60
EP  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_4_a9/
LA  - ru
ID  - PFMT_2014_4_a9
ER  - 
%0 Journal Article
%A R. Gabasov
%A F. M. Kirillova
%A Vo Thi Thanh Ha
%T Observation of linear systems on the principle of disclosable loop
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 60-69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_4_a9/
%G ru
%F PFMT_2014_4_a9
R. Gabasov; F. M. Kirillova; Vo Thi Thanh Ha. Observation of linear systems on the principle of disclosable loop. Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 60-69. http://geodesic.mathdoc.fr/item/PFMT_2014_4_a9/

[1] K. T. Leondes (red.), Filtratsiya i stokhasticheskoe upravlenie v dinamicheskikh sistemakh, Mir, M., 1980

[2] F. C. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs”, IEEE Transactions on Automatic Control, 13:1 (1968), 22–28 | DOI

[3] R. Gabasov, F. M. Kirillova, “Soyuznye zadachi upravleniya, nablyudeniya i identifikatsii”, Dokl. AN BSSR, 34:9 (1990), 777–780 | MR | Zbl

[4] R. Gabasov, F. M. Kirillova, O. I. Kostyukova, “Sintez optimalnykh upravlenii dlya dinamicheskikh sistem pri nepolnoi i netochnoi informatsii ob ikh sostoyaniyakh”, Tr. Mat. in-ta im. V. A. Steklova RAN, 211, 1995, 140–152 | MR | Zbl

[5] R. Gabasov, F. M. Kirillova, N. M. Dmitruk, “Optimalnoe nablyudenie za nestatsionarnymi sistemami”, Izv. RAN. Teoriya i sistemy upravleniya, 2002, no. 3, 35–46

[6] R. Gabasov, F. M. Kirillova, E. A. Kostina, “Zamykaemaya obratnaya svyaz dlya garantirovannoi optimizatsii neopredelennykh sistem upravleniya”, Dokl. RAN, 347:2 (1996), 180–183 | MR | Zbl

[7] R. Gabasov, F. M. Kirillova, N. V. Balashevich, “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 838–859 | MR | Zbl

[8] R. Gabasov, F. M. Kirillova, A. I. Tyatyushkin, Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Izd-vo Universitetskoe, Minsk, 1984 | MR