Modeling of the radial density function of a gravitating globe
Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 36-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the approximation of spherical symmetry and correct physical radial behavior the density function is simulated in several analytical forms. On this basis the density function generalized form for layered structure is proposed. Masses of terrestrial planets are calculated with averaged characteristics. The possible application of simulation results is evaluated.
Keywords: density function, spherical layer, hypergeometric function, gamma function, Heaviside step function, terrestrial planet.
@article{PFMT_2014_4_a6,
     author = {G. Yu. Tyumenkov and E. P. El'nikov and E. V. Firagina},
     title = {Modeling of the radial density function of a gravitating globe},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {36--39},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_4_a6/}
}
TY  - JOUR
AU  - G. Yu. Tyumenkov
AU  - E. P. El'nikov
AU  - E. V. Firagina
TI  - Modeling of the radial density function of a gravitating globe
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 36
EP  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_4_a6/
LA  - ru
ID  - PFMT_2014_4_a6
ER  - 
%0 Journal Article
%A G. Yu. Tyumenkov
%A E. P. El'nikov
%A E. V. Firagina
%T Modeling of the radial density function of a gravitating globe
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 36-39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_4_a6/
%G ru
%F PFMT_2014_4_a6
G. Yu. Tyumenkov; E. P. El'nikov; E. V. Firagina. Modeling of the radial density function of a gravitating globe. Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 36-39. http://geodesic.mathdoc.fr/item/PFMT_2014_4_a6/

[1] B. W. Carroll, D. A. Ostlie, An Introduction to Modern Astrophysics, Pearson International Edition, 2007, 1309 pp.

[2] A. R. Choudhuri, Astrophysics for Physicists, Cambridge University Press, 2010, 471 pp.

[3] V. A. Magnitskii, Vnutrennee stroenie i fizika Zemli, Nauka, M., 2006, 390 pp.

[4] B. Uilyam, Vnutrennee stroenie planet, Mir, M., 1987, 328 pp.

[5] E. V. Firagina, “Modelirovanie raspredeleniya plotnosti dlya planet zemnoi gruppy”, Aktualnye voprosy fiziki i tekhniki, v. 1, GGU im. F. Skoriny, Gomel, 2013, 153–155

[6] D. S. Kuznetsov, Spetsialnye funktsii, Vysshaya shkola, M., 1962, 249 pp.

[7] D. L. Anderson, Theory of the Earth, Blackwell Publications, Boston, 1989, 366 pp.

[8] T. H. Jordan, “Structural Geology of the Earth's Interior”, Proceedings of the National Academy of Sciences of the United States of America, 76:8 (2014), 4192–4200

[9] , California Institute of Technology (USA), NASA's Jet Propulsion Laboratory, Pasadena, CA, 2004 (Date of access: 10.08.2014) http://www.jpl.nasa.gov/solar-system/