On $P$-property of subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 47-52

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. We say that $H$ has $P$-property in $G$ if $|G/K:N_{G/K}(HK/K\cap L/K)|$ is a $p$-number for any $pd$-chief factor $L/K$ of $G$. Using this property of subgroups, some new criterions of $p$-nilpotency of groups are obtained.
Keywords: finite group, $p$-nilpotent group, $P$-property of subgroup.
@article{PFMT_2014_3_a8,
     author = {Baojun Li and Aming Liu},
     title = {On $P$-property of subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {47--52},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/}
}
TY  - JOUR
AU  - Baojun Li
AU  - Aming Liu
TI  - On $P$-property of subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 47
EP  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/
LA  - en
ID  - PFMT_2014_3_a8
ER  - 
%0 Journal Article
%A Baojun Li
%A Aming Liu
%T On $P$-property of subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 47-52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/
%G en
%F PFMT_2014_3_a8
Baojun Li; Aming Liu. On $P$-property of subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 47-52. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/