On $P$-property of subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. We say that $H$ has $P$-property in $G$ if $|G/K:N_{G/K}(HK/K\cap L/K)|$ is a $p$-number for any $pd$-chief factor $L/K$ of $G$. Using this property of subgroups, some new criterions of $p$-nilpotency of groups are obtained.
Keywords: finite group, $p$-nilpotent group, $P$-property of subgroup.
@article{PFMT_2014_3_a8,
     author = {Baojun Li and Aming Liu},
     title = {On $P$-property of subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {47--52},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/}
}
TY  - JOUR
AU  - Baojun Li
AU  - Aming Liu
TI  - On $P$-property of subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 47
EP  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/
LA  - en
ID  - PFMT_2014_3_a8
ER  - 
%0 Journal Article
%A Baojun Li
%A Aming Liu
%T On $P$-property of subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 47-52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/
%G en
%F PFMT_2014_3_a8
Baojun Li; Aming Liu. On $P$-property of subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 47-52. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a8/

[1] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR

[2] W. Guo, The theory of classes of groups, Kluwer Academic Publishers Group, Dordrecht, 2000 | MR

[3] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter Co., Berlin, 1992 | MR

[4] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | DOI | MR

[5] O. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[6] W. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[7] X. Su, “Seminormal subgroups of finite groups”, J. Math. (Wuhan), 8:1 (1988), 5–10 | MR

[8] T. Foguel, “On seminormal subgroups”, J. Algebra, 165:3 (1994), 633–635 | DOI | MR | Zbl

[9] L. Wang, Y. Wang, “On s-semipermutable maximal and minimal subgroups of Sylow $p$-subgroups of finite groups”, Comm. Algebra, 34:1 (2006), 143–149 | DOI | MR | Zbl

[10] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “Sufficient conditions for supersolubility of finite groups”, J. Pure Appl. Algebra, 127:2 (1998), 113–118 | DOI | MR | Zbl

[11] W. Guo, K. P. Shum, A. N. Skiba, “Conditionally permutable subgroups and supersolubility of finite groups”, Southeast Asian Bull. Math., 29 (2005), 493–510 | MR | Zbl

[12] W. Guo, A. N. Skiba, “Finite groups with given s-embedded and $n$-embedded subgroups”, Journal of Algebra, 321:10 (2009), 2843–2860 | DOI | MR | Zbl

[13] W. Guo, K. P. Shum, A. N. Skiba, “$X$-permutable maximal subgroups of Sylow subgroups of finite groups”, Ukraïn. Mat. Zh., 58:10 (2006), 1299–1309 | MR | Zbl

[14] O. Kegel, “Produkte nilpotenter gruppen”, Arch. Math., 12 (1961), 90–93 | DOI | MR | Zbl

[15] A. Skiba, “On weakly s-permutable subgroups of finite groups”, J. Algebra, 315:1, 192–209 | DOI | MR | Zbl

[16] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[17] M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ. House, Washington, N. J., 1982 | MR | Zbl

[18] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967 | MR | Zbl