Scalar particle with intrinsic structure in the electromagnetic field in curved space-time
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relativistic theory of the Cox’s scalar not point-like particle with intrinsic structure is developed in the presence of external electromagnetic and gravitational fields; the latter is described by pseudo-Riemannian space-time geometry. It is shown that the generalized Proca-like tensor system of equations of the first order contains non minimal interaction terms through electromagnetic tensor $F_{\beta\alpha}$ and Ricci tensor $R_{\beta\alpha}$. Generalized scalar equation of the Klein–Fock–Gordon type turns out to be much more complicated than the ordinary wave equation.
Keywords: spin zero, intrinsic structure, generalized wave equation, Riemannian space.
Mots-clés : Cox’s particle
@article{PFMT_2014_3_a5,
     author = {E. M. Ovsiyuk and O. V. Veko and K. V. Kazmerchuk},
     title = {Scalar particle with intrinsic structure in the electromagnetic field in curved space-time},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {32--36},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a5/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
AU  - O. V. Veko
AU  - K. V. Kazmerchuk
TI  - Scalar particle with intrinsic structure in the electromagnetic field in curved space-time
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 32
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a5/
LA  - ru
ID  - PFMT_2014_3_a5
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%A O. V. Veko
%A K. V. Kazmerchuk
%T Scalar particle with intrinsic structure in the electromagnetic field in curved space-time
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 32-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a5/
%G ru
%F PFMT_2014_3_a5
E. M. Ovsiyuk; O. V. Veko; K. V. Kazmerchuk. Scalar particle with intrinsic structure in the electromagnetic field in curved space-time. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 32-36. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a5/

[1] V. V. Kisel, “Tochnye resheniya uravneniya Koksa dlya chastitsy so spinom 0 vo vneshnikh elektromagnitnykh polyakh”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2000, no. 2, 82–85

[2] V. M. Redkov, Polya chastits v rimanovom prostranstve i gruppa Lorentsa, Belorusskaya nauka, Minsk, 2009, 486 pp. | Zbl

[3] W. Cox, “Higher-rank representations for zero-spin field theories”, J. Phys. Math. Gen., 15:2 (1982), 627–635 | DOI | MR

[4] F. R. Gantmakher, Teoriya matrits, 4-e izd., Nauka, M., 1988, 552 pp. | MR | Zbl

[5] E. Cunningham, “The principle of relativity in electrodynamics and an extension thereof”, Proc. London Math. Soc., 8 (1909), 77–98 | MR

[6] H. Bateman, “On the conformal transformations of the space of four dimensional and their applications to geometric optics”, Proc. London Math. Soc., 7 (1909), 70–92 | DOI | MR

[7] W. Pauli, “Über die Invarianz der Dirac'schen Wellengleichungen gegenüber Ähnlichkeitstransformationen des Linienelementes im Fall verschwindender Ruhmasse”, Helv. Phys. Acta, 13 (1940), 204–208 | MR

[8] F. Gürsey, “On a conform invariant spinor wave equation”, Nuovo Cim., 3:10 (1956), 988–1006 | DOI | MR | Zbl

[9] F. Gürsey, “On some conform invariant worldlines”, Rev. Fac. Sci. Univ. Istanbul. A, 21 (1956), 129–142 | MR

[10] F. Gürsey, “Reformulation of general relativity in accordance with Mach's principle”, Ann. Phys., 24 (1963), 211–244 | DOI | MR