Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_3_a3, author = {Yu. A. Grishechkin and M. S. Danilchenko and V. N. Kapshai}, title = {Complex scaling method for two-particle equations in the momentum representation and resonance states}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {21--25}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/} }
TY - JOUR AU - Yu. A. Grishechkin AU - M. S. Danilchenko AU - V. N. Kapshai TI - Complex scaling method for two-particle equations in the momentum representation and resonance states JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 21 EP - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/ LA - ru ID - PFMT_2014_3_a3 ER -
%0 Journal Article %A Yu. A. Grishechkin %A M. S. Danilchenko %A V. N. Kapshai %T Complex scaling method for two-particle equations in the momentum representation and resonance states %J Problemy fiziki, matematiki i tehniki %D 2014 %P 21-25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/ %G ru %F PFMT_2014_3_a3
Yu. A. Grishechkin; M. S. Danilchenko; V. N. Kapshai. Complex scaling method for two-particle equations in the momentum representation and resonance states. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 21-25. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/
[1] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975, 568 pp.
[2] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969, 608 pp.
[3] J. Nutall, H. L. Cohen, “Method of Complex Coordinates for Three-Body Calculations above the Breakup Threshold”, Phys. Rev., 188 (1969), 1542–1544 | DOI
[4] E. Balslev, J. M. Combes, “Spectral properties of many body Schrodinger operators with dilation-analytic interactions”, Commun. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl
[5] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for the Jost solutions and decaying resonance states”, Izvestiya Gomelskogo gosudarstvennogo universiteta, 2006, no. 6(39), 3–8
[6] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for different wave functions and their use for resonance finding”, J. Phys. B, 42:4 (2009), 044001 | DOI
[7] V. N. Kapshai, K. P. Shilyaeva, “Opredelenie vliyaniya rezonansov na sechenie rasseyaniya na osnove integralnogo uravneniya Fredgolma”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4(5), 10–17
[8] V. N. Kapshai, K. P. Shilyaeva, Yu. A. Grishechkin, “Rezonansnye sostoyaniya sostavnykh sistem i kovariantnye dvukhchastichnye uravneniya teorii polya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, Sbornik nauchnykh trudov, In-t fiziki NAN Belarusi, Minsk, 2011, 79–88
[9] A. A. Logunov, A. N. Tavkhelidze, “Quasi-Optical Approach in Quantum Field Theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR
[10] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys., B6:1 (1968), 125–148 | DOI
[11] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690
[12] T. A. Alferova, V. N. Kapshai, “Expansion in terms of matrix elements of the Lorentz group unitary irreducible representations and integral equations for scattering states relativistic wave functions”, Nonlinear phenomena in complex systems, Proced. of the Sixth Annual Seminar NPCS'97, Academy of Sciences of Belarus. Inst. of Phys., Minsk, 1998, 78–85
[13] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | DOI | MR | Zbl
[14] Yu. A. Grishechkin, V. N. Kapshai, “Numerical solution of relativistic problems on bound states of systems of two spinless particles”, Russian Physics Journal, 56:4 (2013), 435–443 | DOI | Zbl