Complex scaling method for two-particle equations in the momentum representation and resonance states
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The complex scaling method is applied to the non-relativistic and relativistic two-particle equations in the momentum representation for resonance sates finding. The comparison of the resonance states spectra obtained in the momentum representation with the similar results obtained in the coordinate representation for the Schrödinger equation and in the relativistic configurational representation for the two-particle relativistic equations is carried out. A good agreement of the results obtained in different representations is shown.
Keywords: relativistic two-body equations, complex scaling method, resonance states, momentum representation, relativistic configuration representation.
@article{PFMT_2014_3_a3,
     author = {Yu. A. Grishechkin and M. S. Danilchenko and V. N. Kapshai},
     title = {Complex scaling method for two-particle equations in the momentum representation and resonance states},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--25},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - M. S. Danilchenko
AU  - V. N. Kapshai
TI  - Complex scaling method for two-particle equations in the momentum representation and resonance states
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 21
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/
LA  - ru
ID  - PFMT_2014_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A M. S. Danilchenko
%A V. N. Kapshai
%T Complex scaling method for two-particle equations in the momentum representation and resonance states
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 21-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/
%G ru
%F PFMT_2014_3_a3
Yu. A. Grishechkin; M. S. Danilchenko; V. N. Kapshai. Complex scaling method for two-particle equations in the momentum representation and resonance states. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 21-25. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a3/

[1] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975, 568 pp.

[2] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969, 608 pp.

[3] J. Nutall, H. L. Cohen, “Method of Complex Coordinates for Three-Body Calculations above the Breakup Threshold”, Phys. Rev., 188 (1969), 1542–1544 | DOI

[4] E. Balslev, J. M. Combes, “Spectral properties of many body Schrodinger operators with dilation-analytic interactions”, Commun. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl

[5] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for the Jost solutions and decaying resonance states”, Izvestiya Gomelskogo gosudarstvennogo universiteta, 2006, no. 6(39), 3–8

[6] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for different wave functions and their use for resonance finding”, J. Phys. B, 42:4 (2009), 044001 | DOI

[7] V. N. Kapshai, K. P. Shilyaeva, “Opredelenie vliyaniya rezonansov na sechenie rasseyaniya na osnove integralnogo uravneniya Fredgolma”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4(5), 10–17

[8] V. N. Kapshai, K. P. Shilyaeva, Yu. A. Grishechkin, “Rezonansnye sostoyaniya sostavnykh sistem i kovariantnye dvukhchastichnye uravneniya teorii polya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, Sbornik nauchnykh trudov, In-t fiziki NAN Belarusi, Minsk, 2011, 79–88

[9] A. A. Logunov, A. N. Tavkhelidze, “Quasi-Optical Approach in Quantum Field Theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[10] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys., B6:1 (1968), 125–148 | DOI

[11] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690

[12] T. A. Alferova, V. N. Kapshai, “Expansion in terms of matrix elements of the Lorentz group unitary irreducible representations and integral equations for scattering states relativistic wave functions”, Nonlinear phenomena in complex systems, Proced. of the Sixth Annual Seminar NPCS'97, Academy of Sciences of Belarus. Inst. of Phys., Minsk, 1998, 78–85

[13] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | DOI | MR | Zbl

[14] Yu. A. Grishechkin, V. N. Kapshai, “Numerical solution of relativistic problems on bound states of systems of two spinless particles”, Russian Physics Journal, 56:4 (2013), 435–443 | DOI | Zbl