The algorithm for determination of immobile indixes in convex SIP problems with polyhedral index sets
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 65-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The convex Semi-Infinite Programming (SIP) problems with polyhedral index sets are considered. For these problems a finite algorithm for determination of immobile indixes and their immobility orders along the feasible directions is described and justified. An example illustrating the application of the algorithm is provided.
Keywords: semi-infinite programming, convex programming, immobility order, cone of feasible directions, extreme ray.
Mots-clés : immobile index
@article{PFMT_2014_3_a12,
     author = {M. V. Kulahina},
     title = {The algorithm for determination of immobile indixes in convex {SIP} problems with polyhedral index sets},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--76},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a12/}
}
TY  - JOUR
AU  - M. V. Kulahina
TI  - The algorithm for determination of immobile indixes in convex SIP problems with polyhedral index sets
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 65
EP  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a12/
LA  - ru
ID  - PFMT_2014_3_a12
ER  - 
%0 Journal Article
%A M. V. Kulahina
%T The algorithm for determination of immobile indixes in convex SIP problems with polyhedral index sets
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 65-76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a12/
%G ru
%F PFMT_2014_3_a12
M. V. Kulahina. The algorithm for determination of immobile indixes in convex SIP problems with polyhedral index sets. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 65-76. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a12/

[1] R. Hettich, K. O. Kortanek, “Semi-infinite programming: theory, methods and applications”, SIAM Reviev, 35:3 (1993), 380–429 | DOI | MR | Zbl

[2] G. Still, “Generalized semi-infinite programming: Theory and methods”, European Journal of Operational Research, 119 (1999), 301–313 | DOI | Zbl

[3] O. Stein, G. Still, “On optimality conditions for generalized semi-infinite programming problems”, Journal of Optimization Theory and Applications, 104:2 (2000), 443–458 | DOI | MR | Zbl

[4] J. J. Ruckmann, A. Shapiro, “First-order optimality conditions in generalized semi-infinite programming”, Journal of Optimization Theory and Applications, 101:3 (1999), 677–691 | DOI | MR | Zbl

[5] D. Klatte, “Stable local minimizers in semi-infinite optimization: regularity and second-order conditions”, J. Comput. Appl. Math., 56 (1994), 137–157 | DOI | MR | Zbl

[6] A. Moldovan, L. Pellegrini, “On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions”, Journal of Optimization Theory and Applications, 142 (2009), 165–183 | DOI | MR | Zbl

[7] O. I. Kostyukova, T. V. Tchemisova, “Sufficient optimality conditions for convex semi-infinite programming”, Optimization Methods and Software, 25:2 (2010), 279–297 | DOI | MR | Zbl

[8] O. I. Kostyukova, T. V. Tchemisova, S. A. Yermalinskaya, “On the algorithm of determination of immobile indices for convex SIP problems”, International Journal on Mathematics and Statistics, 13:8 (2008), 13–33 | MR | Zbl

[9] O. I. Kostyukova, T. V. Tchemisova, A constructive algorithm for determination of immobile indices in convex SIP problems with polyhedral index sets, Preprint, Institute of Mathematics, National Academy of Sciences of Belarus, Aveiro; Mathematical Department, University of Aveiro, 2012, 17 pp.

[10] O. I. Kostyukova, T. V. Tchemisova, “Implicit optimality criterion for convex SIP problem with box constrained index set”, Journal of Mathematical Sciences, 20 (2012), 475–502 | MR | Zbl