Mots-clés : $p$-solvable group
@article{PFMT_2014_3_a10,
author = {D. V. Gritsuk},
title = {Dependence of the derived $p$-length of a $p$-solvable group on the order of its {Sylow} $p$-subgroup},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {58--60},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a10/}
}
D. V. Gritsuk. Dependence of the derived $p$-length of a $p$-solvable group on the order of its Sylow $p$-subgroup. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 58-60. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a10/
[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.
[2] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[3] P. Hall, G. Higman, “The $p$-lengh of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | DOI | MR | Zbl
[4] E. G. Bryukhanova, “Svyaz mezhdu 2-dlinoi i proizvodnoi dlinoi silovskoi 2-podgruppy konechnoi razreshimoi gruppy”, Matematicheskie zametki, 29:2 (1981), 161–170 | MR
[5] A. Mann, “The derived length of $p$-groups”, J. Algebra, 224 (2000), 263–267 | DOI | MR | Zbl
[6] V. S. Monakhov, “Konechnye gruppy s polunormalnoi khollovoi podgruppoi”, Matematicheskie zametki, 80:4 (2006), 573–581 | DOI | MR | Zbl
[7] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vestnik BGU. Seriya 1, 2012, no. 3, 90–95
[8] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O konechnykh $\pi$-razreshimykh gruppakh s bitsiklicheskimi silovskimi podgruppami”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 61–66
[9] D. V. Gritsuk, “Proizvodnaya $\pi$-dlina $\pi$-razreshimoi gruppy, silovskie $p$-podgruppy kotoroi libo bitsiklicheskie, libo imeyut poryadok $p^3$”, Problemy fiziki, matematiki i tekhniki, 2014, no. 2(19), 54–58
[10] V. S. Monakhov, O. A. Shpyrko, “O nilpotentnoi $\pi$-dline maksimalnykh podgrupp konechnykh $\pi$-razreshimykh grupp”, Vectnik Mosk. un-ta. Seriya 1. Matematika. Mekhanika, 2009, no. 6, 3–8