Mass of massive spherical shell with regard to gravitational defect
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 13-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The expression defining the mass of the spherical dustlike shell with regard to the gravitational defect is obtained. It is shown that the mass of a spherical dustlike shell increases with its radius. In the limiting case, the mass tends to the value of free, not connected with gravitational interaction of mass.
Keywords: theory of gravitation, dustlike spherical shell, gravitational mass defect.
@article{PFMT_2014_3_a1,
     author = {N. A. Akhramenko and L. M. Bulauko},
     title = {Mass of massive spherical shell with regard to gravitational defect},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--15},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a1/}
}
TY  - JOUR
AU  - N. A. Akhramenko
AU  - L. M. Bulauko
TI  - Mass of massive spherical shell with regard to gravitational defect
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 13
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a1/
LA  - ru
ID  - PFMT_2014_3_a1
ER  - 
%0 Journal Article
%A N. A. Akhramenko
%A L. M. Bulauko
%T Mass of massive spherical shell with regard to gravitational defect
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 13-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a1/
%G ru
%F PFMT_2014_3_a1
N. A. Akhramenko; L. M. Bulauko. Mass of massive spherical shell with regard to gravitational defect. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 13-15. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a1/

[1] D. V. Sivukhin, Obschii kurs fiziki, v 5 t., v. 1, Mekhanika, Fizmatlit, M., 2005, 560 pp.

[2] I. V. Savelev, Kurs fiziki, v 3 t., v. 1, Mekhanika. Molekulyarnaya fizika, Nauka, M., 1989, 352 pp.

[3] A. N. Matveev, Mekhanika i teoriya otnositelnosti, ONIKS 21 vek, M., 2003, 432 pp.

[4] A. A. Detlaf, B. M. Yavorskii, Kurs fiziki, Vyssh. shk., M., 1989, 608 pp.

[5] T. I. Trofimova, Kurs fiziki, Vyssh. shk., M., 1997, 542 pp.

[6] B. M. Yavorskii, A. A. Detlaf, Spravochnik po fizike, Nauka, M., 1990, 624 pp.

[7] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988, 512 pp.

[8] A. N. Serdyukov, Kalibrovochnaya teoriya skalyarnogo gravitatsionnogo polya, Izd-vo Gomelskogo gos. un-ta, Gomel, 2005, 257 pp.