The covariant representation spin polarizability of the nucleon
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The option of relativistic-invariant definition of spin polarizability on the basis of covariant creation of the induced dipolar moments and phenomenological effective Lagrangian interactions of an electromagnetic field with these moments is offered.
Keywords: polarizability, Lagrangian, Compton scattering.
@article{PFMT_2014_3_a0,
     author = {V.V.Andreev and O. M. Deryuzhkova and N. V. Maksimenko},
     title = {The covariant representation spin polarizability of the nucleon},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--12},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/}
}
TY  - JOUR
AU  - V.V.Andreev
AU  - O. M. Deryuzhkova
AU  - N. V. Maksimenko
TI  - The covariant representation spin polarizability of the nucleon
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 7
EP  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/
LA  - ru
ID  - PFMT_2014_3_a0
ER  - 
%0 Journal Article
%A V.V.Andreev
%A O. M. Deryuzhkova
%A N. V. Maksimenko
%T The covariant representation spin polarizability of the nucleon
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 7-12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/
%G ru
%F PFMT_2014_3_a0
V.V.Andreev; O. M. Deryuzhkova; N. V. Maksimenko. The covariant representation spin polarizability of the nucleon. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 7-12. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/

[1] C. E. Carlson, M. Vanderhaeghen, Constraining off-shell effects using low-energy Compton scattering, , 2011 (Date of access: 04.10.2011) 1109.3779 [physics.atom-ph]

[2] N. Krupina, V. Pascalutsa, “Separation of proton polarizabilities with the beam asymmetry of Compton scattering”, Phys. Rev. Lett., 110:26 (2013), 262001-1-4 | DOI

[3] N. V. Maksimenko, L. G. Moroz, Fenomenologicheskoe opisanie polyarizuemostei elementarnykh chastits v polevoi teorii, Trudy XI Mezhdunarodnoi shkoly molodykh uchenykh po fizike vysokikh energii i relyativistskoi yadernoi fizike. D2-11707, OIYaI, Dubna, 1979, 533–543

[4] N. V. Maksimenko, “Kovariantnoe opredelenie polyarizuemosti adronov spina edinitsa”, Doklady Akademii nauk Belarusi, 36:6 (1992), 508–510

[5] M. I. Levchuk, L. G. Moroz, “Giratsiya nuklona kak odna iz kharakteristik ego elektromagnitnoi struktury”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1985, no. 1, 45–54 | MR

[6] A. A. Bogush i dr., “Ob opisanii polyarizuemosti skalyarnykh chastits v teorii relyativistskikh volnovykh uravnenii”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 1981, 81–90

[7] V. V. Andreev, N. V. Maksimenko, “Polyarizuemost elementarnykh chastits v teoretiko-polevom podkhode”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4(9), 7–11 | MR

[8] N. V. Maksimenko, O. M. Deryuzhkova, “Kovariantnyi kalibrovochno-invariantnyi formalizm Lagranzha s uchetom polyarizuemostei chastits”, Vestsi NAN Belarusi, seryya fiz.-mat. navuk, 2011, no. 2, 27–30

[9] R. J. Hill et al., “The NRQED lagrangian at order $\frac1{M^4}$”, Phys. Rev. D, 87:5 (2013), 053017-1-13 | DOI

[10] Y. Zhang, K. Savvidy, “Proton Compton scattering in a unified proton-$\Delta^+$ Model”, Phys. Rev. C, 88 (2013), 064614-1-12 | DOI

[11] B. R. Holstein, S. Scherer, Hadron polarizabilities, 2013, arXiv: (Date of access: 31.12.2013) 1401.0140 [hep-ph]

[12] S. Raguza, “Third-order spin polarizabilities of the nucleon, I”, Phys. Rev. D, 47:9 (1993), 3757–3767 | DOI

[13] S. Raguza, “Third-order spin polarizabilities of the nucleon, II”, Phys. Rev. D, 49:7 (1994), 3157–3159 | DOI

[14] D. Babusci et al., “Low-energy Compton scattering of polarized photons on polarized nucleons”, Phys. Rev. C, 58 (1998), 1013–1041 | DOI

[15] J. S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI

[16] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1967, 460 pp.

[17] M. V. Galynskii, F. I. Fedorov, “O preobrazovanii tenzora puchka pri vzaimodeistvii sveta so sredoi”, ZhPS, 44:2 (1986), 288–292

[18] V. A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12:3 (1981), 692–753

[19] M. Damashek, F. J. Gilman, “Forward Compton scattering”, Phys. Rev., D1:6 (1970), 1319–1332

[20] V. V. Andreev, O. M. Deryuzhkova, N. V. Maksimenko, “Sovariant equations of motion of a spin $1/2$ particle in an electromagnetic field with allowance for polarizabilities”, Russ. Phys. Journ., 56:9 (2014), 1069–1075 | DOI | Zbl