Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_3_a0, author = {V.V.Andreev and O. M. Deryuzhkova and N. V. Maksimenko}, title = {The covariant representation spin polarizability of the nucleon}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--12}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/} }
TY - JOUR AU - V.V.Andreev AU - O. M. Deryuzhkova AU - N. V. Maksimenko TI - The covariant representation spin polarizability of the nucleon JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 7 EP - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/ LA - ru ID - PFMT_2014_3_a0 ER -
V.V.Andreev; O. M. Deryuzhkova; N. V. Maksimenko. The covariant representation spin polarizability of the nucleon. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 7-12. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a0/
[1] C. E. Carlson, M. Vanderhaeghen, Constraining off-shell effects using low-energy Compton scattering, , 2011 (Date of access: 04.10.2011) 1109.3779 [physics.atom-ph]
[2] N. Krupina, V. Pascalutsa, “Separation of proton polarizabilities with the beam asymmetry of Compton scattering”, Phys. Rev. Lett., 110:26 (2013), 262001-1-4 | DOI
[3] N. V. Maksimenko, L. G. Moroz, Fenomenologicheskoe opisanie polyarizuemostei elementarnykh chastits v polevoi teorii, Trudy XI Mezhdunarodnoi shkoly molodykh uchenykh po fizike vysokikh energii i relyativistskoi yadernoi fizike. D2-11707, OIYaI, Dubna, 1979, 533–543
[4] N. V. Maksimenko, “Kovariantnoe opredelenie polyarizuemosti adronov spina edinitsa”, Doklady Akademii nauk Belarusi, 36:6 (1992), 508–510
[5] M. I. Levchuk, L. G. Moroz, “Giratsiya nuklona kak odna iz kharakteristik ego elektromagnitnoi struktury”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1985, no. 1, 45–54 | MR
[6] A. A. Bogush i dr., “Ob opisanii polyarizuemosti skalyarnykh chastits v teorii relyativistskikh volnovykh uravnenii”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 1981, 81–90
[7] V. V. Andreev, N. V. Maksimenko, “Polyarizuemost elementarnykh chastits v teoretiko-polevom podkhode”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4(9), 7–11 | MR
[8] N. V. Maksimenko, O. M. Deryuzhkova, “Kovariantnyi kalibrovochno-invariantnyi formalizm Lagranzha s uchetom polyarizuemostei chastits”, Vestsi NAN Belarusi, seryya fiz.-mat. navuk, 2011, no. 2, 27–30
[9] R. J. Hill et al., “The NRQED lagrangian at order $\frac1{M^4}$”, Phys. Rev. D, 87:5 (2013), 053017-1-13 | DOI
[10] Y. Zhang, K. Savvidy, “Proton Compton scattering in a unified proton-$\Delta^+$ Model”, Phys. Rev. C, 88 (2013), 064614-1-12 | DOI
[11] B. R. Holstein, S. Scherer, Hadron polarizabilities, 2013, arXiv: (Date of access: 31.12.2013) 1401.0140 [hep-ph]
[12] S. Raguza, “Third-order spin polarizabilities of the nucleon, I”, Phys. Rev. D, 47:9 (1993), 3757–3767 | DOI
[13] S. Raguza, “Third-order spin polarizabilities of the nucleon, II”, Phys. Rev. D, 49:7 (1994), 3157–3159 | DOI
[14] D. Babusci et al., “Low-energy Compton scattering of polarized photons on polarized nucleons”, Phys. Rev. C, 58 (1998), 1013–1041 | DOI
[15] J. S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI
[16] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1967, 460 pp.
[17] M. V. Galynskii, F. I. Fedorov, “O preobrazovanii tenzora puchka pri vzaimodeistvii sveta so sredoi”, ZhPS, 44:2 (1986), 288–292
[18] V. A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12:3 (1981), 692–753
[19] M. Damashek, F. J. Gilman, “Forward Compton scattering”, Phys. Rev., D1:6 (1970), 1319–1332
[20] V. V. Andreev, O. M. Deryuzhkova, N. V. Maksimenko, “Sovariant equations of motion of a spin $1/2$ particle in an electromagnetic field with allowance for polarizabilities”, Russ. Phys. Journ., 56:9 (2014), 1069–1075 | DOI | Zbl